
 the Digital Printing initiative

PPML
Personalized Print Markup Language

for XML-based, efficient printing
of documents with reusable content

Functional Specification
Version 1.5
May 31, 2001
The PPML Working Group

© 2001 PODi http://www.podi.org

http://www.podi.org/

PPML
The Personalized Print Markup Language
http://www.podi.org

Feedback and Developer Participation
PODi welcomes feedback on this specification, and offers the following services to support
widespread adoption of the specification:

• Specification Updates
The PPML specification is distributed free of charge. If you are a developer who will be
implementing the PPML standard, you should subscribe to the free PPML updates and tech note
service.

Additional PPML features are already planned, and some aspects of the specification are likely
to be refined as development proceeds. The spec document itself will be updated, and
technical notes will be published containing clarifications, implementation notes, and so on.

• Developer Support web site
If you are a software or hardware developer interested in supporting PPML, you can register to
participate in the PPML Developers discussion group. At present, there is no charge for this
service.

To participate in the PPML initiative in any of the above ways, send an email to
ppmlinfo@podi.org.

PODi
The Digital Printing Initiative
Web: www.podi.org

http://www.podi.org/
mailto:ppmlinfo@podi.org
http://www.ppml.org/

www.ppml.org Copyright  2000 PODi (www.podi.org) Page i

Table of Contents
Chapter 1: Introduction..1

1.1 Purpose of the PPML language..1
1.2 Organization of this document..1
1.3 Notation used in this document ...2
1.4 Additional resources..2
1.5 Feedback...2

Chapter 2: The PPML Data Format ...3
2.1 XML ..3
2.2 Non-XML data ..4

Chapter 3: Terminology and Basic Concepts ..7
3.1 Producers and Consumers ..7
3.2 Anatomy of a Personalized Print project ...7
3.3 Additional terminology ..8
3.4 Detection of Errors ..9

Chapter 4: The Structure of PPML Data ..11
4.1 Hierarchy, Scope, and Inheritance ..11
4.2 The <PPML> Element ...13
4.3 The <JOB> Element ...14
4.4 The <DOCUMENT> Element ..15
4.5 The <PAGE> Element ..16
4.6 The <PAGE_DESIGN> Element ...17
4.7 The <CONFORMANCE> Element ...19

Chapter 5: The PPML page...21
5.1 Coordinate System..21
5.2 A Page contains Marks..21
5.3 The <MARK> Element..22
5.4 The <VIEW> Element...24
5.5 The <TRANSFORM> Element..25
5.6 The <CLIP_RECT> Element..26
5.7 The <OBJECT> Element ...27
5.8 The <SOURCE> Element ..28
5.9 The <EXTERNAL_DATA> Element ..30
5.10 The <EXTERNAL_DATA_ARRAY> Element...31
5.11 The <INTERNAL_DATA> Element ..32
5.12 The <REUSABLE_OBJECT> Element ...33
5.13 The <OCCURRENCE_LIST> Element ..34
5.14 The <OCCURRENCE> Element ...35
5.15 The <OCCURRENCE_REF> Element...38

PPML Specification Version 1.5 May 31, 2001

Page ii Copyright  2001 PODi (www.podi.org) www.ppml.org

5.16 Notes on REUSABLE_OBJECTs, OCCURRENCES, Scope, and Environment39
5.17 The <SEGMENT_ARRAY> element ..41
5.18 The <SEGMENT_REF> element ...43
5.19 Definition of PPML Extent Boxes...44
5.20 Notes on Transforming, Clipping and Positioning ..46

Chapter 6: Print Layout – Page Layout and Imposition...71
6.1 Introduction..71
6.2 The <PRINT_LAYOUT> Element...73
6.3 The <PAGE_LAYOUT> Element ...74
6.4 The <SHEET_LAYOUT> Element ..76
6.5 The <SHEET_MARK> Element ...77
6.6 The <IMPOSITION> Element ..78
6.7 The <IMPOSITION_REF> Element..80
6.8 The <SIGNATURE> Element ...81
6.9 The <CELL> Element ..83
6.10 The <HOR_TRIM_MARKS> Element ...88
6.11 The <VER_TRIM_MARKS> Element ..90
6.12 The <HOR_GUTTER> Element ...91
6.13 The <VER_GUTTER> Element ..93
6.14 The <HOR_FOLD_MARKS> Element ..94
6.15 The <VER_FOLD_MARKS> Element..95
6.16 The <REPEAT> Element ..96

Chapter 7: Production Specifications..99
7.1 Introductory remarks..99
7.2 The <PRIVATE_INFO> Element..100

Chapter 8: Resources ...101
8.1 The <REQUIRED_RESOURCES> Element ..101
8.2 The Element ..102
8.3 The <PROCESSOR> Element ..103
8.4 The <SUPPLIED_RESOURCES> Element ..104
8.5 The <SUPPLIED_RESOURCE> Element ..105
8.6 The <SUPPLIED_RESOURCE_REF> Element ...106

Chapter 9: Future Capabilities..107
9.1 Transparency / overprinting...107
9.2 Color Management ...107
9.3 PPML Consumer Profile ..107

Chapter 10: Conformance Subsets ...109
10.1 Introduction..109
10.2 Graphic Arts subset...109

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page iii

Appendix 1: Acknowledgements...113
PPML Working Group participants ..113
Prior work..113
Origins of PPML..114

Appendix 2: Introduction to XML...115
Appendix 3: Strings to use for the Format attribute of SOURCE117
Appendix 4: Change History ...119

PPML Specification Version 1.5 May 31, 2001

Page iv Copyright  2001 PODi (www.podi.org) www.ppml.org

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 1

Chapter 1:
Introduction

1.1 Purpose of the PPML language

This document describes the PPML (Personalized Print Markup Language) data format. The PPML
format was developed by members of PODi, a market development and education initiative.
Information about PODi is available at http://www.podi.org.

The main purpose of the PPML language, compared to most earlier languages, is to provide
object-level addressability and reusability. More information on these features and their
target applications is available in the PODi document Introduction to PPML: the Personalized Print
Markup Language.

1.2 Organization of this document

This document reflects the hierarchical structure of PPML data.

Section 1 is this introduction.

Section 2 discusses the data format: XML.

Section 3 introduces terminology: the anatomy of a PPML document, job, etc.

Section 4 then presents the structure of PPML data, down to the level where documents are
composed of pages.

Section 5 presents the make-up of the PPML page, including “Objects” and “Marks,” the printable
page image elements that go onto pages. The language features in this section are the source of
the power of the PPML language.

Section 6 presents the Print Layout elements: page size, sheet size, imposition, step and repeat.

Section 7 discusses Production Specifications: aspects of how the finished document is
“manufactured.”

Section 8 discusses Resources – the additional items such as fonts that are required for production
of the pages.

PPML Specification Version 1.5 May 31, 2001

Page 2 Copyright  2001 PODi (www.podi.org) www.ppml.org

1.3 Notation used in this document

The following typographic notation is used in this document.

• Code excerpts, element names, and attributes: Courier

• The vertical bar character signifies the logical OR operator: |
For instance, “SOURCE | OCCURRENCE_REF” means
“SOURCE or OCCURRENCE_REF”.

• Because many PPML element names are common English words, it is often convenient and
accurate to use them conversationally. In this document, when an element name appears in text
not in Courier, but with Initial Capitals, it is specifically referring to the PPML item that bears
that name. When it appears with no capitalization, the word is being used with no special
PPML significance. Example:
 The SOURCE element contains one or more component files.
 In an OBJECT element, the Source may contain data in any of several formats.
 Customers may submit image data that was gathered from a number of different sources.

• In tables of XML attributes, when the data type is Number or Integer, a multiplication sign
indicates a string of numbers separated by spaces. For instance, “Number ✕4” indicates that
the value of the attribute should be four numbers, such as ”1.234 2.0 3 4.567.”

1.4 Additional resources

See the PODi web site, http://www.podi.org, for additional documents about PPML and
personalized printing in general.

1.5 Feedback

Feedback on this specification is welcome. Send email to ppmlinfo@podi.org.

http://www.podi.org/ppml
mailto:ppmlinfo@ppml.org

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 3

Chapter 2:
The PPML Data Format

2.1 XML

PPML is an application of XML, the Extensible Mark-up Language.

2.1.1 Introduction to XML

Data objects in an XML stream are called elements, and each type of element can be defined as
having certain attributes. This specification defines the elements for the PPML data format, the
hierarchy requirements for the structure of a PPML document, and the attributes for each element.

Readers who are not yet familiar with XML are directed to these resources:

• Appendix 2 of this document is a brief description of how XML works.

� XML.ORG (http://www.xml.org) is an industry web portal operated by OASIS, the
Organization for the Advancement of Structured Information Standards.

� OASIS’s “The SGML/XML Web Page” (http://www.oasis-open.org/cover/sgml-xml.html)
contains many excellent links to reference information.

� “The XML.commune” (http://www.xml.com) is a collaborative partnership between Seybold
Publications and Songline Studios, an affiliate of O’Reilly & Associates. The site includes Tim
Bray’s excellent annotated version of the XML syntax recommendation.

� Project Cool XML Zone (http://www.projectcool.com/developer/xmlz/) is one of the best sites
for developers, with a fairly good introduction to the basics of XML.

2.1.2 Notation for specifying optional elements

Within one XML element, other elements may be required or optional. In standard XML syntax
notation optional elements are denoted by placing a punctuation mark next to the subordinate
element:

Symbol Meaning
? 0 or 1 (may or may not be present)
+ 1 or more (at least one is required)
* 0 or more

Example: As will be described later, the PAGE element may or may not contain a Required
Resources section, and may contain zero or more PRIVATE_INFO elements and zero or more
Marks. This structure would be denoted:

PAGE (REQUIRED_RESOURCES?, PRIVATE_INFO*, MARK*)

This notation, with the “child” elements enclosed in parentheses, is sometimes referred to as the
element’s model.

http://www.xml.org/
http://www.oasis-open.org/cover/sgml-xml.html
http://www.xml.com/
http://www.projectcool.com/developer/xmlz/

PPML Specification Version 1.5 May 31, 2001

Page 4 Copyright  2001 PODi (www.podi.org) www.ppml.org

2.1.3 PPML Capitalization conventions

In XML, the names of elements and their attributes are case-sensitive, so capitalization is significant
in the code examples in this document.

The PPML capitalization convention is:

Element names: ALL_CAPS_WITH_UNDERSCORE_BETWEEN_WORDS.

Attributes: TitleCase, with no space between words.

Example of a JOB tag with attributes “Name” and “DocumentCount”:

<JOB Label=”MyJob” DocumentCount=”150”>

2.1.4 DTD

All versions of the Document Type Definition (DTD) for PPML will always be available at
"http://www.podi.org/ppml". The current version (PPML 1.02) is stored as
"http://www.podi.org/ppml/ppml102.dtd".

The DTD’s version identifier string shall be encoded into the filename so it is not necessary to open
the DTD file to determine its version.

The PPML specification has a unique PUBLIC identifier that can be used to identify the DTD in a
PPML file. This identifier is -//PODi//DTD PPML 1.02//EN for this version of the specification.

This is the DOCTYPE declaration that appears at the start of a PPML file:

<!DOCTYPE PPML PUBLIC

 "-//PODi//DTD PPML 1.02//EN" "http://www.podi.org/ppml/ppml102.dtd">

Any valid PPML file must include this declaration.

2.1.5 Character sets

PPML elements may contain characters as defined in the XML specification at
http://www.w3.org/TR/REC-xml#charsets.

2.2 Non-XML data

2.2.1 Introduction

Non-XML data is an important part of printing. For instance, binary data is used for bitmap images
and compressed data such as fonts. But as of the writing of this specification, XML elements cannot
readily incorporate such data.1,2

1 The CDATA element provides a method, but it requires that the Producer constantly scan the data for
occurrences of such strings as “]]>”, and split the data at these points. This is more of a burden than one
might think, because much of such data will be binary data objects (e.g. image data) that already exist as
intact files, and the entire file would have to be scanned for the string. Similarly, the Consumer would then
have to reconstruct the data that has been split.

http://www.w3.org/TR/REC-xml#charsets

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 5

A process is underway in the XML movement to solve this, but results are not expected within the
timeframe required by the PPML initiative. When a standard XML solution for non-XML data has
been announced, the intention is that PPML will support it. In the meantime another approach is
required.

2.2.2 External references

This method includes no non-XML data within the XML stream; rather, it is kept in external files and
pointed to as external resources. Example:

<EXTERNAL_DATA Src=”ftp://uc.wisc.edu/logo.eps” .../>

2.2.3 Wrap the non-XML data and the XML structure, in segments, in MIME as a
means of transporting the dataset in a single stream.

Some applications will always absolutely require in-stream non-XML data. Other applications may
include hundreds or thousands of single-use images, which would be a nuisance to store online for
access via external reference; it’s simpler to just download the data within the job stream, print it,
and throw it away. Clearly, therefore, a method is needed to embed non-XML data in the
data stream.

When the W3C solution arrives it will be possible to send a stream of PPML elements interspersed
with non-XML data. The Consumer will receive the stream, extract the non-XML data and deal with
it, and parse and handle the XML segments.

Today, the same thing could be done by using MIME as an encoding filter: 3

� The Producer, instead of putting the additional data between start and end tags, inserts MIME
separators between segments.

� The Consumer, seeing that the start of the stream is MIME, not <?xml version="1.0"?>,
unpacks the MIME pieces and reassembles the XML and non-XML pieces.

� Processing then proceeds the same as it will when the W3C solution is implemented.

This method has the advantage of already being permissible in XML.

2Another application dealing with this issue is medical imaging. See
http://www.xml.com/xml/pub/98/07/binary/binary.html.
3Resources about MIME:

• RFC 2557 (MIME E-mail Encapsulation of Aggregate Documents, such as HTML (MHTML))
http://www.landfield.com/rfcs/rfc2557.html shows how to encapsulate HTML and external data; the
same method is valid for XML.

• RFC2393 (Content-ID and Message-ID Uniform Resource Locators)
http://www.landfield.com/rfcs/rfc2392.html defines cid URIs. This method is used when you email a
complete web page to someone, instead of just the URI.

• RFC 2387 (The MIME Multipart/Related Content-type) describes the MIME method that makes sense for
PPML applications: “Several applications of MIME ... require multiple body parts that make sense only in
the aggregate.”

PPML Specification Version 1.5 May 31, 2001

Page 6 Copyright  2001 PODi (www.podi.org) www.ppml.org

In any event, this topic has no bearing on the central issues of how PPML defines pages and
documents that have reusable content; it relates only to how the various data objects are
“packaged” for transport from the Producer to the Consumer.

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 7

Chapter 3:
Terminology and Basic Concepts

3.1 Producers and Consumers

• A “PPML Producer” (or simply “Producer”) is anything that generates PPML files. This may be a
standalone application, a system-level driver, or anything else.

• A “PPML Consumer” (or simply “Consumer”) is typically a RIP or DFE (digital front end to a
digital printing device), but it may be any other device (or process or system) that reads and
interprets PPML files. PPML Consumers only differ in these regards:
- the data formats they can process in SOURCE elements (see section 5.8)
- their degree of imposition support (See section 6.1.1 for details).
- the data encoding formats they support. The only required encoding format is Base64.

Note that a PPML Consumer may also be a PPML Producer. For instance, an application could read
PPML files, interpret their contents, modify the content or structure, and produce new PPML files.

3.2 Anatomy of a Personalized Print project

• Project is all activities involving both the initial setup phase and the subsequent production
runs. A Project is an on-going activity, consisting of multiple Jobs, as opposed to a conventional
print job which is typically produced once and archived.

• Job is the collection of activities and data to fulfill a single personalized printing work order,
or to prepare the templates, objects, etc. that will later be used in fulfilling production work
orders. In personalized printing, a Job is part of a Project.

• Page is a single side of a trimmed sheet after all trimming and binding has been performed.
Some personalization projects produce documents that have multiple Pages, others (e.g. a
single-sided postcard) produce documents of only one Page. A Page consists of static and/or
varying Objects, each in a specified position and orientation. (“Page” can also refer to the
internal representation of a Page in a PPML file.)

• Content Data is source data (e.g. a picture, a text block, an EPS file) which may be placed
on various Pages in various combinations of scaling, position, rotation, etc. A piece of Content
Data may be used by more than one Object.

• Object is a discrete piece of Content Data in a specific combination of scaling, rotation, etc.
Objects may be Disposable (single-use, RIP once and discard) or Reusable.

• Instance Document is the end result of the PPML manufacturing process: a set of one or
more Pages, bound or loose, produced from a single record in the variable-data file. (This term
also refers to any representation of such a document, such as an on-screen preview.)

• Personalized Document: an Instance Document.

PPML Specification Version 1.5 May 31, 2001

Page 8 Copyright  2001 PODi (www.podi.org) www.ppml.org

• Static Document: a print job that contains no data-driven content – specifically, the page
content is not generated from variable-data fields.4 Such a document may include one or more
Reusable Objects, such as a PowerPoint background or a forms overlay.

• Sheet surface is one side of a press sheet, typically containing one or more instance Pages,
imposed into position for manufacturing of an Instance Document.

• Template is the set of instructions for composing Personalized Documents. It defines which
Pages may be in an Instance Document, what goes on each Page, and the logic rules by which
each Page will be populated in response to the variable data.

• Dataset: a PPML element, typically containing one or more Jobs and/or Reusable Object
definitions and related elements required to process them.

3.3 Additional terminology

• RIP: a Raster Image Processor – a hardware device or software application that reads a
source file in a particular language and converts it to a raster – a pattern of scan lines in a
data format that is suited to the machine on which the printing will take place.

• Pre-flight: a procedure, automated or manual, that is applied to a print file in the graphic
arts to ensure that when production begins, all output will be as expected. This includes
checking that all required resources are available. (The term “pre-flight” alludes to an aircraft
pilot’s pre-flight checklist, which is a process intended to ensure that nothing is overlooked
before the flight begins.)

• Streaming: a type of print application in which the Consumer begins output of the job before
it has received all pages.
 Typically streaming applications are found in long-run transactional printing applications,
such as printing of thousands of phone bills, not in the graphic arts. Usually this means the job
has tens of thousands of pages, essentially infinite, and it means that the resource usage is
unknown when output begins.
 A single streaming job can occupy a printer continuously for days printing unique pages.
To avoid data underrun (where the RIP processing doesn’t keep up with the print engine and
the engine either stops or prints blank pages), the Consumer system must consider carefully
how many resources and pages to preprocess before the stream output begins so that in the
steady state, RIP processing does keep up with the print engine.
 Effective management of cache resources requires reliable information about the future
need for a given cached object; in streaming applications, that information is typically not
available when output begins.

4 Looking at the PPML code for a document, it’s not possible to tell whether or not it was generated from
variable data fields. (The PPML format exists at the point in the workflow where all page content decisions
have already been made.) It’s nonetheless worth defining this term because such documents can be a valid
PPML application if they contain reusable objects.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 9

3.4 Detection of Errors

When an error is detected with the information in a PPML file, the behavior of the Consumer is not
specified. Some Consumers may halt the job at that point. Others may generate a warning
message, ignore the offending PPML, and proceed as best they can.

PPML Specification Version 1.5 May 31, 2001

Page 10 Copyright  2001 PODi (www.podi.org) www.ppml.org

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 11

Chapter 4:
The Structure of PPML Data

4.1 Hierarchy, Scope, and Inheritance

4.1.1 PPML is Hierarchical

PPML is a hierarchical structure, in which the properties and resources of an element are inherited
from its enclosing (“parent”) structure. The contents of the child element may temporarily override
(or mask) the parent’s properties and resources; when the child element ends, the previous state is
restored.

• A PPML element (the highest level) can contain resource definitions and JOB elements.

• A JOB element (a set of personalized documents) can contain resource definitions and
DOCUMENT elements.

• A DOCUMENT element (which prints one complete document, of one or more pages) can
contain resource definitions and PAGE elements.

• A PAGE element can contain resource definitions and MARK elements. MARK elements are
what actually cause page content to be printed onto a page, using ink or toner.

PPML, JOB, DOCUMENT and PAGE are known as levels in the PPML hierarchy.

• A MARK element (which places image marks on a page) can contain two kinds of content
elements: OBJECT and OCCURRENCE_REF. (Each of these content elements contains smaller
elements as well.)

4.1.2 Reusable Objects; caching

An important resource in PPML is the Reusable Object. As explained later in this specification, a
reusable piece of page content is expressed as an OCCURRENCE of a REUSABLE_OBJECT element
and is accessed using OCCURRENCE_REF. This construct is central to PPML’s productivity
improvement.

The reusability feature (enabled by elements such as REUSABLE_OBJECT and SOURCE) allows the
data for a picture (or any other page content) to be sent once to the Consumer, where it can be
RIPped (prepared for imaging on pages) and saved (cached) for reuse in subsequent Pages,
Documents, Jobs, and Datasets. Typically, this improves efficiency by avoiding two redundant
burdens on the system: redundant downloading and redundant computation of the content’s
appearance. But there is no requirement that the Occurrence be cached; how reusability is
implemented in a Consumer is not defined in the PPML language.

Caching would ordinarily improve print speed (by avoiding re-RIPping), but it is valid for a PPML
Consumer not to cache but instead to regenerate the Occurrence, e.g. by re-fetching the source
data and/or reRIPping the object, each time it is used in an OCCURRENCE_REF.

PPML Specification Version 1.5 May 31, 2001

Page 12 Copyright  2001 PODi (www.podi.org) www.ppml.org

4.1.3 Scope

Two important attributes of Occurrences are their Name and their Scope.

The name is the mechanism by which MARK elements can place the Occurrence on a page.

The scope defines how long the Consumer must remember the Occurrence, so that the Producer
can access it by name. Possible values are Page, Document, Job, PPML, and Global.5 (Note
that the content elements OBJECT and MARK are not scopes.)

When an Occurrence is in scope the Consumer is required to recognize the Occurrence’s name
and be able to use it. When the Occurrence’s specified scope level ends, the Occurrence becomes
out of scope. For instance, if an Occurrence has scope “Document”, then at the end of the current
Document (i.e. when a </DOCUMENT> tag is encountered) the Occurrence goes out of scope.

The scope of a PPML element defines where this element is known. Each named element is known
within the enclosing element specified by its scope (Job, Document, etc), from the point where it is
first defined until the end of that element.

The Occurrence can be defined with a scope larger than the current enclosing element. For
instance, within a DOCUMENT element an Occurrence can be defined with Scope=“Job”. In that
case the Occurrence will be known beyond the end of the DOCUMENT element, until the end of the
enclosing JOB element.

Any element in the hierarchy inherits the names known to its enclosing element (i.e. a PAGE knows
of all elements that are defined in its enclosing DOCUMENT etc.).

Scope is discussed at greater length in section 5.10 of this document.

5 Global objects have an additional attribute, Environment, which can be used to categorize global objects for
project management purposes. See further discussion in section 5 of this document.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 13

4.2 The <PPML> Element

4.2.1 Description

The PPML element is the top level, encompassing all other elements of the dataset.

4.2.2 Model

PPML (CONFORMANCE_LEVEL?,

SUPPLIED_RESOURCES?,

REQUIRED_RESOURCES?,

IMPOSITION*,

(PRINT_LAYOUT | PAGE_DESIGN)?,

PRIVATE_INFO*,

(REUSABLE_OBJECT | SEGMENT_ARRAY | JOB)*)

4.2.3 Attributes

Attribute

Required
/Optional

Type

Description

Label Optional String An identifying label for this PPML element.

Creator Optional String Identifies application or person that created the file, for
instance to potentially aid in post-processing

CreationDate Optional String Time stamp, in date/hours/minutes/seconds, using the
subset of ISO 8601 described in the W3C’s
http://www.w3.org/TR/NOTE-datetime.
Example: “1997-07-16T19:20:30+01:00”

ResourcesIncluded Optional Boolean Values: Yes or No. If Yes, promises a Consumer that all
referenced content data, fonts, and other resources are
supplied with the dataset. See section 10.2.3, “Details of
ResourcesIncluded”.

SheetLayoutIncluded Optional Boolean Values: Yes or No. If Yes, declares that this dataset
includes the SHEET_LAYOUT element and requires that
the imposition defined in SHEET_LAYOUT must be
honored. (See Section 6.1.1 for discussion of optional
imposition support in PPML). Consumers that do not support
SHEET_LAYOUT must reject the dataset if this attribute’s
value is Yes.

4.2.4 Implementation notes

Note that a PPML dataset is allowed to not contain any Jobs. A valid dataset could contain nothing
but a set of Reusable Object definitions with Scope=“Global” which are being sent to the
Consumer for pre-processing and storage in the Consumer system.

http://www.w3.org/TR/NOTE-datetime

PPML Specification Version 1.5 May 31, 2001

Page 14 Copyright  2001 PODi (www.podi.org) www.ppml.org

4.3 The <JOB> Element

4.3.1 Description

A Job is a set of Instance Documents. Typically an Instance Document represents the binding of
layout information (e.g. a template) and a record of data from some data set (e.g. a database).

In personalized print applications, a PPML Job is typically created by applying a specific set of
data (e.g. a selection from a database) to a pre-defined document template. However, such a
workflow is by no means required for generation of a valid PPML dataset or job.

4.3.2 Model

JOB (SUPPLIED_RESOURCES?,

REQUIRED_RESOURCES?,

IMPOSITION*,

(PRINT_LAYOUT | PAGE_DESIGN)?,

PRIVATE_INFO*,

(REUSABLE_OBJECT | SEGMENT_ARRAY | DOCUMENT)+)

4.3.3 Attributes

Attribute

Required
/Optional

Type

Description

Label Optional String An identifying label for this job

DocumentCount Optional Integer Number of Instance Documents in this job. If this attribute is
used, it must be accurate; if the actual document count is
different, it’s an error.

4.3.4 Context

The JOB element appears only within a PPML element. It is optional: a PPML dataset may contain
zero or more Jobs.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 15

4.4 The <DOCUMENT> Element

4.4.1 Description

The DOCUMENT element marks a single Instance Document. Typically an Instance Document represents
the binding of layout information (e.g. a template) and a record of data from some data set (e.g. a
database). Example: when printing personalized information for people on a mailing list, the
Document tag delimits each individual set of pages that will be sent to one recipient on the list.

A Document may be larger or smaller than one sheet of substrate. The Document may be hundreds
of pages long or one page, and in either case, each page could be any size, from a full press
sheet to something as small as a postage stamp, so that many Documents could be printed on a
single sheet. The term “Document” is thus not a physical term but a logical one.

The default is to print Instance Documents in the same sequence as they appear in the PPML stream,
unless the Consumer is specifically instructed to do otherwise, e.g. via a REPEAT structure.

4.4.2 Model

DOCUMENT (SUPPLIED_RESOURCES?,

REQUIRED_RESOURCES?,

PAGE_DESIGN?,

PRIVATE_INFO*,

(REUSABLE_OBJECT | SEGMENT_ARRAY | PAGE)+)

4.4.3 Attributes

Attribute

Required
/Optional

Type

Description

Label Optional String An identifying label for this Document.

Dimensions Optional Number
✕2

Width and height of pages in this Document, in PPML units.
Example: for a U.S. letter page, Dimensions=“612 792”.

Use of this attribute is no longer recommended. Use the
PAGE_DESIGN or PAGE_LAYOUT element instead. This
attribute is ignored if a PAGE_DESIGN or PAGE_LAYOUT
element is in effect. If no such element is in effect, this attribute is
equivalent to <PAGE_DESIGN TrimBox="0 0 w h"/>

PageCount Optional Integer Number of pages in the document. If this attribute is used, it must
be accurate; if the actual page count is different, the result is an
error.

DocumentCopies Optional Integer How many copies to print of this Instance Document in the Job. (If
the current PRINT_LAYOUT element has an NCopies
attribute, the total copies printed will be NCopies times
DocumentCopies.)

4.4.4 Context

The DOCUMENT element occurs only within a JOB element.

PPML Specification Version 1.5 May 31, 2001

Page 16 Copyright  2001 PODi (www.podi.org) www.ppml.org

4.5 The <PAGE> Element

4.5.1 Description

The PAGE element delimits the contents of each individual page in each Instance Document.

4.5.2 Model

PAGE (SUPPLIED_RESOURCES?,

REQUIRED_RESOURCES?,

PAGE_DESIGN?,

PRIVATE_INFO*,

(REUSABLE_OBJECT | SEGMENT_ARRAY | MARK)*)

4.5.3 Attributes

Attribute

Required
/Optional

Type

Description

Label Optional String An identifying label for this Page.

Dimensions Optional Number
✕2

Width and height of this Page, in PPML units. Example: for a
U.S. letter page, Dimensions=“612 792”.

Use of this attribute is no longer recommended. Use the
PAGE_DESIGN or PAGE_LAYOUT element instead. This
attribute is ignored if a PAGE_DESIGN or PAGE_LAYOUT
element is in effect. If no such element is in effect, this attribute
is equivalent to <PAGE_DESIGN TrimBox="0 0 w h"/>.

4.5.4 Context

The PAGE element appears only within a DOCUMENT element.

4.5.5 Blank pages

A PAGE element that does not contain any MARK elements instructs the Consumer to print a blank
page.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 17

TrimBox:
Finished page

= 8½ x 11”

BleedBox =
9 x 11½”
(1/4” bleed all sides)

PPML page origin
(locates the finished

page rectangle in the
PPML coordinate system)

(80,80)

+
(0,0) Origin of PPML

coordinate system

4.6 The <PAGE_DESIGN> Element

4.6.1 Description

The PAGE_DESIGN element specifies the finished rectangular area of a Page as well as optional
bleed box information. Examples:

<PAGE_DESIGN TrimBox=”0 0 612 792”

 BleedBox=”-18 -18 630 810”

 />

The same page, with its origin offset from
the origin of the PPML coordinate system:

<PAGE_DESIGN TrimBox=”80 80 692 872”

 BleedBox=”62 62 710 890”

 />

The “Trim Box”

The required TrimBox attribute indicates the rectangular region of interest of the page design
and defines the intended finished page size. The TrimBox origin is defined in the PPML coordinate
system which is the same coordinate system in which all marks for the page are specified.

This information is useful to a PPML processor such as a PPML viewer, page proofer, or imposition
layout tool only interested in page design definitions. An imposition tool, for example, may use the
TrimBox information as the description of the intended finished page design, and use its dimensions
to locate cut marks on imposed sheets as needed.

The “Bleed Box”

The optional BleedBox attribute indicates that page content extends outside of the design rectangle
specified by the TrimBox attribute and recommends to a Consumer, such as an imposition
processor, a preferred bleed extent.

The BleedBox attribute if specified must completely contain the rectangular region defined by the
TrimBox or be equal to it.

If no BleedBox is specified then no hint is provided to the consumer of the existence of bleed edges
of the intended finished page.

TrimBox:
Finished page

= 8½ x 11”

BleedBox =
9 x 11½”
(1/4” bleed all sides)

PPML page origin
(locates the finished

page rectangle in the
PPML coordinate system)

(0,0)
+

Origin of PPML
coordinate system

PPML Specification Version 1.5 May 31, 2001

Page 18 Copyright  2001 PODi (www.podi.org) www.ppml.org

4.6.2 Model

PAGE_DESIGN EMPTY

4.6.3 Attributes

Attribute

Required
/Optional

Type

Description

TrimBox Required Number ✕4 Coordinates, in 1/72”, of the page content area.

BleedBox Optional Number ✕4 Coordinates, in 1/72”, of the page’s bleed area.

4.6.4 Context

The PAGE_DESIGN element appears within PPML, JOB, DOCUMENT and PAGE.

4.6.5 Page orientation

All dimensions in the attributes are to be listed in “upright” orientation. For instance, a portrait
letter-size page will have PAGE_DESIGN::TrimBox=“0 0 612 792” and a landscape letter-size
page will have PAGE_DESIGN::TrimBox=“0 0 792 612”. Thus, no separate Orientation attribute
is needed.

Note that any page may be rotated later when it is used in imposition (see Chapter 6:). But the
page itself, and its content, are independent of imposition and printing.

4.6.6 Similarity with PAGE_LAYOUT in imposition

PAGE_DESIGN expresses the designer’s intent regarding the finished dimensions of the page. As
described in Chapter 6, later production processes may involve placing pages onto sheets
(“imposition”). The imposition may be expressed using PPML’s imposition features or by using
alternate imposition layout expression formats.

Note that PPML’s imposition includes a PAGE_LAYOUT element, which appears similar to
PAGE_DESIGN because both have a TrimBox and BleedBox attribute. The difference is that
PAGE_DESIGN only expresses the designer’s intent, in the context of the page content stream
(PPML, JOB, DOCUMENT, PAGE), while PAGE_LAYOUT defines the dimensions of page cells (see
section 6.9) in the context of imposition (assigning pages to sheets). Therefore the TrimBox and
BleedBox attributes of PAGE_LAYOUT require a graphical clipping behavior, and the TrimBox
and BleedBox attributes of PAGE_DESIGN do not – they leave the determination of that behavior
to the consuming PPML processor.

At least one PAGE_LAYOUT or PAGE_DESIGN element must be in effect for each Page.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 19

4.7 The <CONFORMANCE> Element

4.7.1 Description

The optional CONFORMANCE element declares that the enclosing dataset conforms to a specific
PPML subset. (See Chapter 10: Conformance Subsets.) The model allows multiple CONFORMANCE
elements, since it’s conceivable that a future dataset could conform to more than one subset.

This element occurs at the start of the model for the PPML element so that a Consumer can know,
from the very beginning, that nothing in the dataset exceeds the restrictions of a defined subset.

The CONFORMANCE element simply informs the PPML Consumer that the dataset meets the subset’s
requirements. The Consumer may use this information, but is not required to do anything with it.

4.7.2 Model

 CONFORMANCE EMPTY

4.7.3 Attributes

Attribute

Required/
Optional

Type

Description

Subset Required String Declares which PPML subset the dataset conforms to.
The identifying string for each defined subset will be
stated in the section of this specification that defines the
subset.

4.7.4 Context

CONFORMANCE can occur in PPML.

4.7.5 Example

The following is the start of a dataset that conforms to two hypothetical subsets:

 <PPML>
 <CONFORMANCE Subset="GA"/>

 <CONFORMANCE Subset="TR"/>

 <SUPPLIED_RESOURCES ...>

 ...

PPML Specification Version 1.5 May 31, 2001

Page 20 Copyright  2001 PODi (www.podi.org) www.ppml.org

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 21

Chapter 5:
The PPML page

5.1 Coordinate System

The PPML coordinate system is the same as the Cartesian coordinates used by PostScript®:

• the origin (0,0) is at the bottom left corner of the page

• units are 1/72 of an inch

• x increases to the right

• y increases upward.

All PPML units are base 10. The following definitions apply:

Integer: In PPML, an “integer” is specified as an optional sign character (‘+’ or ‘−’, with ‘+’ being
the default) followed by one or more digits “0” to “9”. The range for a PPML integer encompasses
(at a minimum) −2147483648 to +2147483647.

Number: In PPML, a “number” is either an “integer” or an optional sign character (‘+’ or ‘−’, with
‘+’ being the default) followed by zero or more digits “0” to “9” followed by a dot (.) followed by
zero or more digits “0” to “9” with at least one digit required either before or after the dot. The
digits after the dot may be followed by an optional exponent. The exponent is the letter ‘E’ or ‘e’
followed by an “integer.” A “number” has the capacity for at least a single-precision floating point
number (see [ICC32]) and has a range (at a minimum) of −3.4e+38F to +3.4e+38F.

[ICC32] refers to “ICC Profile Format Specification, version 3.2”, 1995. Available at
ftp://sgigate.sgi.com/pub/icc/ICC32.pdf.

5.2 A Page contains Marks

PPML constructs a page image by placing a series of Marks on the page. Marks can consist of
graphics, text and/or images defined in some external content data format. A Mark can reference
either non-reusable or reusable content data. Reusable content data are data which may have
multiple occurrences in a PPML page, document, job, dataset or environment. The PPML code
defines the data as reusable, which permits the PPML consumer to cache these items in some format
which may permit highly efficient reproduction.

PPML Specification Version 1.5 May 31, 2001

Page 22 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.3 The <MARK> Element

5.3.1 Description

The MARK element specifies the actual placement of marks on a page. It is used either for the
placement of Objects (section 5.7) or for placing an Occurrence of a Reusable Object (section
5.12).

The Consumer places MARKs on a page in the order in which they are listed in the PAGE element.
MARKs later in a PAGE element are placed on top of the earlier ones.

Each MARK’s Position attribute defines its location on the page; while the associated VIEW
allows selecting (clipping) and transforming (e.g. scaling) the MARK to create the desired page
content.

Conceptually, each MARK defines a rectangular raster image that consists of “marked” and
“transparent” pixels. Each MARK is rasterized independently from any other MARKs on the page.
When a MARK overlaps MARKs previously placed on the page, its marked pixels completely
obscure the previous MARKs’ pixels, and the transparent pixels leave the previous MARKs’ pixels
unaffected. Which pixels in a MARK’s raster image are marked and which are transparent
depends on the MARK’s content data and the content data format, and is outside of the scope of
the PPML Specification.

Notes:

1. In the case of PostScript and PDF content data, the MARK’s raster image starts out
consisting of transparent pixels. Only those pixels marked by imaging operators are
“marked” in the MARK’s raster image.

2. In the case of non-transparent TIFF content data, the original rectangular area defined by
the TIFF source is completely marked. If the data is not rotated by a VIEW transformation,
the rectangular raster image resulting from the MARK completely obscures every pixel
beneath it. If the data is rotated, then only the pixels beneath the parallelogram resulting
from the transformed TIFF data are obscured.

3. Other content formats likewise include the concept of transparent (or “clear”) pixels as well
as white and colored pixels. Any such transparent pixels will allow pixels from previous
MARKs to show through unaffected.

Some content formats describe pixels (or objects) that are only partially transparent. The interaction
of these pixels with other pixels or objects defined by the same content data from a single SOURCE
used to generate the raster image for a particular MARK is defined by the content data format, and
is outside of the scope of the PPML specification. However, any such pixels are considered
“marked” for the purposes of determining the effect of MARK overlaps: if the raster image for a
MARK contains “partially transparent” pixels that overlap pixels from a previous MARK, the
“partially transparent” pixels of the MARK that is on top are considered as “marked” pixels and
completely obscure the previous MARK’s pixels.

5.3.2 Model

MARK ((VIEW, OBJECT+) | OCCURRENCE_REF | SEGMENT_REF)

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 23

5.3.3 Attributes

Attribute

Required
/Optional

Type

Description

Position Required Number ✕2 Specifies a translation to be applied to the object's
coordinate space in order to position the object on the
page. This translation is concatenated with any prior
transformations applied to the original data.

5.3.4 Context

MARK can occur in PAGE.

5.3.5 Implementation note

The Position attribute on MARK and OBJECT defines the placement of these objects. Note that
this placement is also affected by other transformations applied to the elements. For example, if the
OBJECT is a rectangle whose lower left corner is at (0, 0), that corner will be placed at the point
specified by Position. If the rectangle’s upper left corner is at (0, 0), that corner will be placed at
the Position point.

PPML Specification Version 1.5 May 31, 2001

Page 24 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.4 The <VIEW> Element

5.4.1 Description

The VIEW element combines a TRANSFORM with a CLIP_RECT to form a description of how a
particular set of content data is to be rendered.

5.4.2 Model

VIEW (TRANSFORM?, CLIP_RECT?)

5.4.3 Attributes

None.

5.4.4 Context

VIEW can occur in MARK, OBJECT, REUSABLE_OBJECT and OCCURRENCE.

5.4.5 Empty VIEW elements

An empty VIEW element (<VIEW/>) means the identity transform with no clipping.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 25

5.5 The <TRANSFORM> Element

5.5.1 Description

The TRANSFORM element represents a two-dimensional homogeneous transformation matrix.

5.5.2 Model

TRANSFORM EMPTY

5.5.3 Attributes

Attribute

Required
/Optional

Type

Description

Matrix Required Number ✕6 Supplies the components of a two dimensional
homogeneous transformation matrix. See the PostScript
Language Reference Manual for details.

5.5.4 Context

TRANSFORM can occur in VIEW.

PPML Specification Version 1.5 May 31, 2001

Page 26 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.6 The <CLIP_RECT> Element

5.6.1 Description

The CLIP_RECT element specifies the corners of a rectangle to be used for clipping the content
data with which the CLIP_RECT is associated.

5.6.2 Model

CLIP_RECT EMPTY

5.6.3 Attributes

Attribute

Required
/Optional

Type

Description

Rectangle Required Number ✕4 Supplies the x and y coordinates of the lower left and
upper right corners of a rectangle to be used for clipping.

5.6.4 Context

CLIP_RECT can occur in VIEW.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 27

5.7 The <OBJECT> Element

5.7.1 Description

The OBJECT element associates a VIEW with a SOURCE to specify the clip, scale and orientation
of an item of appearance data within a MARK or a REUSABLE_OBJECT.

The Position attribute specifies a translation to be applied to the SOURCE’s coordinate space in
order to position the SOURCE in relation to other SOURCE elements within a MARK or
REUSABLE_OBJECT. This translation is concatenated with any prior transformations applied to the
original data. (See the implementation note regarding object origin in section 5.3.5.)

5.7.2 Model

OBJECT (SOURCE, VIEW)

5.7.3 Attributes

Attribute

Required
/Optional

Type

Description

Position Required Number ✕2 Specifies a translation to be applied to the object's
coordinate space in order to position the object on the
page. This translation is concatenated with any prior
transformations applied to the original data.

5.7.4 Context

The OBJECT element can occur in MARK and REUSABLE_OBJECT.

PPML Specification Version 1.5 May 31, 2001

Page 28 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.8 The <SOURCE> Element

5.8.1 Description

The SOURCE element defines a set of one or more content elements (EXTERNAL_DATA,
INTERNAL_DATA), of a single format, to be collected into a single sequence of appearance data.
The content data from all enclosed elements are concatenated in the order the elements appear,
and are processed as a single unit by the format processor, the same as if all the data had been
submitted to the Consumer as a single object.

Note that some file format specifications allow non-content data, which must be removed by
Consumers that accept that format. For instance, the format type for EPS files is
application/postscript, but Windows EPS files contain a non-PostScript binary preview (See
the PostScript Language Reference Manual, appendix H.5.2.), which the Consumer system must
remove.

5.8.2 Model

SOURCE ((INTERNAL_DATA | EXTERNAL_DATA)+ | EXTERNAL_DATA_ARRAY)

5.8.3 Attributes

Attribute

Required
/Optional

Type

Description

Format Required Keyword Indicates format of the data (e.g., PostScript, PDF, TIFF,
etc.). Value: any format name registered with the Internet
Assigned Numbers Authority (IANA).6

Dimensions Required Number ✕2 The width w and height h of a rectangle that encloses the
content data contained in this element. See 5.8.5,
“Dimensions and ClippingBox” below.

ClippingBox Optional Number ✕4 Supplies the coordinates of the lower left and upper right
corners of the rectangle containing the desired area of the
content data, in PPML default coordinates.

5.8.4 Context

SOURCE can occur in OBJECT.

5.8.5 Dimensions and ClippingBox

• For SOURCE elements whose content format is dimensionless, the Dimensions attribute states
what width and height the Consumer should assume.

• If ClippingBox is not present, Dimensions specifies an implicit clipping rectangle
“0 0 w h”.

6 These formats are listed at http://www.isi.edu/in-notes/iana/assignments/media-types/media-types.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 29

• If both Dimensions and ClippingBox are present, both of them clip. The effective clipping
boundary is the intersection of the clipping rectangle implied by Dimensions and the
specified ClippingBox.

PPML Specification Version 1.5 May 31, 2001

Page 30 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.9 The <EXTERNAL_DATA> Element

5.9.1 Description

An EXTERNAL_DATA element identifies, by location and access method, a single content
appearance datum (e.g. a source file). This datum, which may be in any of the supported formats
(e.g., PostScript, PDF, PCL, TIFF, etc.) can be used by itself or in combination with other content
elements to construct components which appear on the printed page.

5.9.2 Model

EXTERNAL_DATA EMPTY

5.9.3 Attributes

Attribute

Required
/Optional

Type

Description

Src Required URI URI (Uniform Resource Identifier) string identifying the
external data. See RFC2396 for full details of URIs.7

SourceUsage Optional Keyword “Single” or “Multiple” or “Unknown” (default).
A hint to the Consumer: will data from this source be used
only once, or in other elements? See 5.9.5, “The
SourceUsage attribute” below.

5.9.4 Context

EXTERNAL_DATA may occur within SOURCE.

5.9.5 The SourceUsage attribute

SourceUsage=“Multiple” means the data in this source file may be used again later. Thus, the
Consumer may wish to cache the unprocessed source data to avoid retrieving it again later.

7 RFC2396 is at www.ietf.org/rfc/rfc2396.txt. A good overview of URIs and URLs is at
www.w3.org/Addressing/Overview.html.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 31

5.10 The <EXTERNAL_DATA_ARRAY> Element

5.10.1 Description

An EXTERNAL_DATA_ARRAY element identifies, by location and access method, a multi-segment
source datum. A multi-segment source is one that contains multiple content descriptions that can be
accessed individually, e.g. a multi-page PostScript or PDF file.

Only one EXTERNAL_DATA_ARRAY element may be used in a SOURCE element.

5.10.2 Model

EXTERNAL_DATA_ARRAY EMPTY

5.10.3 Attributes

Attribute

Required
/Optional

Type

Description

Src Required URI See section 5.9.3, attributes of EXTERNAL_DATA.

Index Optional Integer Indicates which segment is to be selected for use in this
instance. The default (and minimum) value is "1", which
corresponds to the very first segment of the referenced
source file.

IndexUsage Optional Keyword Single or Multiple or Unknown (default). A hint to
the Consumer, meaning “will additional segments be used
later in the same graphics state?” See section 5.10.5,
“The IndexUsage attribute” below.

5.10.4 Context

EXTERNAL_DATA_ARRAY may occur within SOURCE.

5.10.5 The IndexUsage attribute

IndexUsage= “Multiple” means that although this instance only uses one of the segments in this
multi-segment file, additional instances of EXTERNAL_DATA_ARRAY may call for other segments.
Thus, as an optimization, a Consumer may wish to process all the segments in the source, not just
the one segment specified by the Index attribute.

PPML Specification Version 1.5 May 31, 2001

Page 32 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.11 The <INTERNAL_DATA> Element

5.11.1 Description

An INTERNAL_DATA element is the same as an EXTERNAL_DATA element except that it contains
the actual content data, instead of referring to it. Therefore it has no Src attribute.

Like the datum referred to by an EXTERNAL_DATA element, it may be in any of the supported
formats (e.g., PostScript, PDF, PCL, TIFF, etc.) and can be used by itself or in combination with other
content elements to construct components which appear on the printed page.

Note that the content data itself, contained in the INTERNAL_DATA element, must be valid XML
content – it must be free of XML delimiters and must conform to the character sets identified in
section 2.1.5, “Character sets.”

5.11.2 Model

INTERNAL_DATA (#PCDATA)

5.11.3 Attributes

Attribute

Required
/Optional

Type

Description

Encoding Optional Keyword Encoding scheme of the data: None (default) or any
encoding name registered with the Internet Assigned
Numbers Authority (IANA).8 However, note that
Consumers are only required to support Base64.

CharacterSet Optional String Specifies the character set of the decoded data. For use
with text content or any other media type containing
characters. Value: any character set name registered with
the Internet Assigned Numbers Authority (IANA).9

Label Optional String Any arbitrary string to identify this element, for instance in
case an error message is necessary.

Creator Optional String Identifies the application that created this content.

5.11.4 Context

INTERNAL_DATA may occur within SOURCE.

8 The valid encoding name strings are listed at http://www.isi.edu/in-notes/iana/assignments/transfer-
encodings.
9 The valid character set name strings are at http://www.isi.edu/in-notes/iana/assignments/character-sets.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 33

5.12 The <REUSABLE_OBJECT> Element

5.12.1 Description

The REUSABLE_OBJECT element defines a component of page appearance which is intended for
multiple use, and may therefore be stored by the PPML consumer in some optimized format.

Reusable Objects exist for efficiency: to store frequently used items so they can be accessed without
redundant processing. Each individual use (Occurrence) of a Reusable Object will have its own
different VIEW, but there may be some transformations that are shared. For instance, a photo may
be clipped and rotated, and then be scaled to several different sizes. The VIEW on the Reusable
Object could perform the clipping and rotating once; then several different Occurrences could be
defined, each with a VIEW that performs additional scaling.

5.12.2 Model

REUSABLE_OBJECT (OBJECT+, VIEW, OCCURRENCE_LIST)

5.12.3 Attributes

None.

5.12.4 Context

REUSABLE_OBJECT can occur in PPML, JOB, DOCUMENT and PAGE.

PPML Specification Version 1.5 May 31, 2001

Page 34 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.13 The <OCCURRENCE_LIST> Element

5.13.1 Description

Within a REUSABLE_OBJECT definition element, the OCCURRENCE_LIST element declares each
viewing transformation which may be applied to the object, and may provide hints of the relative
importance of each transformation.

5.13.2 Model

OCCURRENCE_LIST (OCCURRENCE+)

5.13.3 Attributes

None.

5.13.4 Context

OCCURRENCE_LIST can occur in REUSABLE_OBJECT.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 35

5.14 The <OCCURRENCE> Element

5.14.1 Description

The OCCURRENCE element specifies the VIEW and relative importance with which a particular
rendition of a Reusable Object will occur. By specifying Occurrence information in the definition of
a Reusable Object, the PPML Producer facilitates optimization of rendering and storage by the
eventual Consumer.

Note that the element model contains no explicit statement of the dimensions of the content
image area that will be created when the Consumer generates this Occurrence. A Consumer that
wishes to anticipate the dimensions should do so by accumulating the clipping boxes defined in the
REUSABLE_OBJECT element.

5.14.2 Model

OCCURRENCE (VIEW)

5.14.3 Attributes

Attribute

Required
/Optional

Type

Description

Name Required String Name to be used when referring to this OCCURRENCE.
The name must be unique within the Occurrence’s scope
or environment; see 5.14.5, “Policies for Name
collisions”below.

Environment Required if Scope
=“Global”; not
needed otherwise

String Specifies the environment in which a global object should
be defined. (There is no default environment.)

Scope Optional Keyword Specifies the scope of this object’s use. Possible values are
Global, PPML, Job, Document and Page.
By default, the scope is the containing element in which
the object is defined. A higher value may be specified in
this attribute, but a lower value is an error.

Overwrite Optional Boolean Defines what the Consumer should do if
Scope=“Global” and the name already exists in the
specified Environment: Yes means “overwrite the
existing Occurrence”, No means “ignore this element.”
Default= No. This attribute has no meaning unless
Scope=“Global”.

Weight Optional Number A number from 1 (minimum importance) to 100
(maximum) describing, qualitatively, the relative
importance of this Occurrence. See 5.14.6, “Statistics
about Reuse: the Weight attribute.”

5.14.4 Context

The OCCURRENCE element can occur in OCCURRENCE_LIST.

PPML Specification Version 1.5 May 31, 2001

Page 36 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.14.5 Policies for Name collisions

The value of Name must be unique within the scope (or within the Environment, if Scope=
“Global”). The following policies define how the Consumer should handle the case where Name
already exists at the specified Scope:

• If Scope=“Global” then the Overwrite attribute defines what action should be taken:
overwrite the existing attribute, or ignore this element?

• If Scope is not Global, an error occurs.

5.14.6 Statistics about Reuse: the Weight attribute

How efficiently a given system (Producer or Consumer) handles reusable content is expected to be
a major differentiating factor compared to other PPML systems. System designers are therefore
advised to give thought to efficient design regarding this feature.

Typically, when a PPML Consumer receives a Reusable Object definition, it will pre-process it (RIP
it) into the data format required by the target print engine, and then save the resulting Occurrences
somewhere (cache them), e.g. in RAM, on internal disk, or on some attached storage system.
Sometime later, in the same print run or some other run, the data stream will call for that
Occurrence by name, and the Consumer will be able to recall it from storage and image it without
pausing to process it “on the fly.”

A Consumer must make informed decisions about what to cache and for how long. A Consumer
with large amounts of RAM may be able to hold all of a job’s Occurrences in RAM at once; this
approach will usually produce the fastest possible throughput. But as system price declines, RAM
tends to be more limited, which forces the Consumer to make decisions about what to cache and
what not to – especially as jobs become complicated and the quantity of Occurrences increases.

Imagine, for instance, a print run that includes two Occurrences. If one will be used 800 times and
the other only twice, it’s clear which one should be cached.

But the Consumer cannot make that decision unless it knows the relative importance of the
Occurrences. Producers therefore play an important role in supporting productive printing: only the
Producer knows how often an Occurrence will be used in a given print run, and if the Producer
wishes to support optimized printing, it should feed that information to the Consumer via the
Weight attribute in the OCCURRENCE element.

In the absence of Weight, a Consumer can still base a caching strategy on such factors as scope
or least recently used.

5.14.7 What to cache and for how long

The Consumer is responsible for its caching technology and caching strategy; there is no
requirement in this specification that the Consumer provide any particular caching functionality.
However, the major goal of the PPML initiative is to improve efficiency of reuse, so Consumers that
substantially improve throughput are likely to be much more successful.

It’s also important to understand that there is no requirement to cache at any particular stage of the
RIPping process. The communication between Producer and Consumer on this subject is limited to
the Producer providing two types of information: Weight hints and Scope declarations.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 37

Note that even if an Occurrence goes out of scope, the Consumer is not required to purge it (nor
take any other action). In fact the Producer has no certain knowledge of the Occurrence’s status.
Even the scope declaration is just a “hint” that the Consumer may or may not use.

5.14.8 Implementation note: Effects of imposition

Consumers are advised to take into account the possibility that imposition (see Chapter 6: of this
specification) will require the Occurrence to be imaged in more than one orientation.

PPML Specification Version 1.5 May 31, 2001

Page 38 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.15 The <OCCURRENCE_REF> Element

5.15.1 Description

The OCCURRENCE_REF element creates a reference to an Occurrence of a Reusable Object. The
Reusable Object and Occurrence to which the OCCURRENCE_REF refers must have been defined
earlier in the dataset or globally via a named environment.

5.15.2 Model

OCCURRENCE_REF EMPTY

5.15.3 Attributes

Attribute

Required
/Optional

Type

Description

Ref Required String Name of a previously defined Occurrence for
this object.

Environment Optional String The environment in which the name of a Global
Occurrence should be interpreted. (This attribute
is required if the scope of the Occurrence is
Global; otherwise, this attribute has no
meaning.)

5.15.4 Context

OCCURRENCE_REF can occur in MARK, SHEET_MARK, VER_TRIM_MARKS, HOR_TRIM_MARKS,
VER_FOLD_MARKS and HOR_FOLD_MARKS.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 39

5.16 Notes on REUSABLE_OBJECTs, OCCURRENCES, Scope,
and Environment

5.16.1 Implementation notes

Note that Occurrences with Scope=“Global” will never go out of scope. Therefore, they will
accumulate wherever the Consumer stores its resources, e.g. its disk or a file server. This means that
any Consumer system may want to consider whether, and how, to manage the storage of Reusable
Objects and their Occurrences.

5.16.2 Protection of an Environment’s global resources

It is the Consumer’s responsibility to protect global-scoped Occurrences from being accidentally
erased by subsequent downloads. Therefore, Consumer vendors may want to require authorization
before any dataset can create or access an Environment. This is left as an implementation decision
for the Consumer.

One approach could be to use some unique identifier as part of the Environment, perhaps
including the domain name of the print job’s originator. In either case, PPML merely considers it to
be a simple text string, but accidental duplication of Environment would be unlikely. Examples:

Scope=“Global” Environment=“FordJob@Dclark@MyCompany.com”

Scope=“Global” Environment=“MyCompany/Dclark/”

5.16.3 Scope

The Occurrence’s Scope attribute defines how long the Occurrence must be available: for the
current Page, the current Document, the current Job, the entire PPML dataset, or permanently
(Global). For instance, in a Consumer that caches Occurrences, when the Consumer completes the
defined scope (e.g. the current Job), the Occurrence can be flushed from cache memory.

Scoping is mostly for lifespan: when an Occurrence goes out of scope, the Consumer is permitted
to recover the resources it used. (It also has a namespace effect – for instance, “Ford logo” may
have a different meaning in a particular job than it does for most projects.) However, global scope
is somewhat different. Most uses of global scope will be for Occurrences that persist over a
considerable period of time: weeks or months, as in a continuing project, perhaps even years, such
as company logos). It is expected that in typical production work such Occurrences will be loaded
into the Consumer system before production jobs begin, and they will then be referenced
repeatedly in multiple jobs or projects.

5.16.4 Resolving Occurrence names

When a Mark contains an Occurrence Reference, the referenced Occurrence name is resolved by
searching from lowest to highest level. If the Occurrence was defined within the current Page, that
definition is used; if not, each higher level is searched: Document, Job, then PPML. Global
Occurrences are only searched if the Occurrence Reference has an Environment attribute. If it has,
only global Occurrences in that Environment are searched and Occurrences at lower scopes are
ignored. It is an error if no Occurrence is found.

mailto:FordJob@Dclark@MyCompany.com

PPML Specification Version 1.5 May 31, 2001

Page 40 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.16.5 Downloading reusable objects for caching for future use

In real world workflows, the source data for some reusable objects typically becomes available to
production workers before other objects become available. To minimize workload at deadline time,
it’s a good idea to download such objects to the Consumer for caching when they become
available, rather than waiting until all objects are available.

To do this, construct a PPML dataset that contains no Jobs, just Reusable Object Definition elements.
Set each element’s Scope attribute to Global and define a value for the Environment string
attribute.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 41

5.17 The <SEGMENT_ARRAY> element

5.17.1 Description

The SEGMENT_ARRAY element defines a collection of reusable objects whose contents are
contained in a multi-page source file. Once the SEGMENT_ARRAY has been declared, individual
segments can be placed on a page by use of a SEGMENT_REF.

5.17.2 Model

SEGMENT_ARRAY (VIEW)

5.17.3 Attributes

Attribute

Required/
Optional

Type

Description

ClippingBox Optional Number × 4 Supplies the coordinates of the lower left and
upper right corners of the rectangle containing the
desired area of the content data, in PPML default
coordinates.

Dimensions Required Number × 2 The width w and height h of a rectangle that
encloses the content data contained in this element.

Environment Required if
Scope =

“Global”;
not needed
otherwise

String Specifies the environment in which a global object
should be defined. (There is no default
environment.)

Format Required Keyword Indicates the format of the data (e.g., PostScript,
PDF, TIFF, etc.) Value: any format name registered
with the Internet Assigned Numbers Authority
(IANA). (See Appendix 3.)

IndexRange Required Comma-separated
list of ranges,
e.g. 1-10 or
1-5,7,10-12

Specifies which of the segments within the source
to fully process and cache within the Consumer.
Segments which are skipped may require some
processing to locate the start of data for
subsequent segments.

The list is specified as either a single index or a
range of indices given as l-h (“low to high”).
The index values must increase monotonically.

Name Required String Name to be used when referencing
SEGMENT_ARRAY elements.

PPML Specification Version 1.5 May 31, 2001

Page 42 Copyright  2001 PODi (www.podi.org) www.ppml.org

Attribute

Required/
Optional

Type

Description

Overwrite Optional Boolean Defines what the Consumer should do if
Scope=”Global” and the name already exists in
the specified environment. For each segment
specified in the IndexRange, a value of “Yes”
instructs the Consumer to replace a prior definition
with the same Name and index by the newly
supplied value and leaves any other segment
unchanged (any segment not in the current
IndexRange is taken from the existing definition).
It is allowed that the maximum index of the current
IndexRange is greater than the one of the existing
definition. A value of “No” (the default) instructs
the Consumer to leave the prior value of the
segment.

Scope Optional Keyword Specifies the scope of this element’s use. Possible
values are Global, PPML, Job, Document
and Page. By default, the scope is the containing
element in which the object is defined. A higher
value may be specified with this attribute.
Specifying a lower scope level is an error.

Src Required URI See section 5.9.3

Weight Optional Number A number from 1 (minimum importance) to 100
(maximum) describing, qualitatively, the relative
importance of this Segment Array. See section
5.14.6, “Statistics about Reuse: the Weight
attribute.”

5.17.4 Context

The SEGMENT_ARRAY element can occur within PPML, JOB, DOCUMENT and PAGE.

5.17.5 Implementation note: Effects of IndexRange and Overwrite

When combining IndexRange with Overwrite=”Yes”, it is possible that segments in the same
SEGMENT_ARRAY have different values for ClippingBox, View and Dimensions.

5.17.6 Implementation note: Effects of nested scopes

A redefinition of a SEGMENT_ARRAY on a lower scope completely hides the ones on a higher
scope. As a consequence a reference to a segment that is not in the IndexRange of the
SEGMENT_ARRAY on the lowest scope results in an empty mark and is not resolved by a possible
segment on a higher scope.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 43

5.18 The <SEGMENT_REF> element

5.18.1 Description

The SEGMENT_REF element creates a reference to a member of a Segment Array. The
SEGMENT_ARRAY element to which this element refers must have been previously defined in a scope
containing the reference.

5.18.2 Model

SEGMENT_REF EMPTY

5.18.3 Attributes

Attribute

Required/
Optional

Type

Description

Environment Optional String Specifies the environment in which the name of the global-
scoped element is defined.

Index Optional Integer Indicates which segment is to be selected for use in this
instance. If Index refers to a segment that falls outside the
specified IndexRange (see also the Overwrite attribute in
SEGMENT_ARRAY), this Mark is empty. The default (and also
minimum) value is ”1”, which corresponds to the very first
segment of the referenced source file.

Ref Required String Specifies the name of the previously defined Segment Array to
which this element refers.

5.18.4 Context

A SEGMENT_REF can occur in MARK.

PPML Specification Version 1.5 May 31, 2001

Page 44 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.19 Definition of PPML Extent Boxes

The extent box of a SOURCE element is its effective clipping boundary determined by its
Dimensions and ClippingBox attributes. See Section 5.8.5, Dimensions and ClippingBox for
the definition of the clipping boundary.

To apply a VIEW to an extent box, the Consumer must use the following procedure:

• Apply the transformation specified in the TRANSFORM attribute to the current extent box. This
results in a four-sided figure.

• If the VIEW has a CLIP_RECT attribute, clip the four-sided figure using the clipping rectangle.
This results in a figure that can have up to eight sides.

• Compute the bounding box of this figure: it is the new extent box.

To combine two or more extent boxes, compute the bounding box of the positioned extent boxes: it
is the new extent box.

5.19.1 Applying a VIEW to an Extent Box

This example shows how a VIEW is applied to an extent box:

The resulting extent box is shown below:

original extent box
(transformed)

CLIP_RECT

6-sided clipped area

6-sided clipped area

resulting extent box

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 45

5.19.2 Combining Extent Boxes

When two or more objects are combined in a single mark, their extent boxes are combined as
follows, then the view is applied as shown in the previous section:

The resulting extent box is shown below:

The next section contains examples of how extent boxes are used.

2nd extent box (positioned)

1st extent box (positioned)

2nd extent box (positioned)

1st extent box (positioned)

resulting extent box

PPML Specification Version 1.5 May 31, 2001

Page 46 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.20 Notes on Transforming, Clipping and Positioning

The following two examples show how to process a simple case of a MARK on a PPML page: a
single EPS file is transformed and clipped in various ways, and placed on a page. All the
instructions in the first example will be contained in the MARK element; the second example shows
how the same result could be accomplished using a REUSABLE_OBJECT element.

Both examples use the same original EPS file – a few words of text, which fits into a box 100 units
high and 150 units wide. The result we want to achieve is a part of this EPS file, reduced, cropped,
and rotated, as shown at the right.

 Source Desired Result

5.20.1 Self-Contained MARK Example

A self-contained MARK has this structure:

• The simplest possible MARK contains a VIEW and one OBJECT.

• An OBJECT is a VIEW of a single SOURCE.

• Each of the VIEWs can contain a TRANSFORM and a CLIP_RECT.

To process a MARK, the Consumer must first process each OBJECT inside it. And to do that, it first
processes the SOURCE in the OBJECT. Here is the resulting sequence the Consumer must follow:

• Process the SOURCE, applying its ClippingBox if any

• Take the result and transform it using the TRANSFORM from the OBJECT’s VIEW

• Take the result and clip it using the CLIP_RECT from the OBJECT’s VIEW

This produces one OBJECT that will be contained in the MARK.

Now, position the OBJECT in the MARK’s coordinate space.

Repeat the above for each OBJECT in the MARK.

Now, apply the MARK’s VIEW:

• Take the set of (one or more) OBJECTs and transform it using the TRANSFORM from the MARK’s
VIEW

• Take the result and clip it using the CLIP_RECT from the MARK’s VIEW

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 47

This produces the final piece of page content that will appear on the page. The last step will be to
position it on the page, using the MARK’s Position attribute.

The following PPML fragment achieves our desired result using a self-contained MARK:
<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position="-20 -20">
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

Note that the Format attribute of the SOURCE has been omitted for clarity.

A PPML Consumer processes this fragment using the steps shown on the following pages.

PPML Specification Version 1.5 May 31, 2001

Page 48 Copyright  2001 PODi (www.podi.org) www.ppml.org

1. Read the SOURCE element in the OBJECT

First, the Consumer finds the SOURCE element inside the MARK:

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

The ClippingBox attribute crops the edges of the EPS file, as shown by the dashed line:

 ; Current coordinate space: the SOURCE.

The result is shown below. This is the content defined by this SOURCE element:

SOURCE’s origin

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 49

2. Completing the OBJECT: VIEW the SOURCE

Next, the Consumer applies the OBJECT’s VIEW, starting with the TRANSFORM element:

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

The transformation component of this VIEW specifies a translation of (-25.98,31.7) and a rotation
of –30°.

; Current coordinate space: the OBJECT.

SOURCE origin

Offset -25.98,31.7

from OBJECT origin,

rotated -30°

PPML Specification Version 1.5 May 31, 2001

Page 50 Copyright  2001 PODi (www.podi.org) www.ppml.org

Now process the OBJECT’s CLIP_RECT. This completes the VIEW, and thus completes the content
of the OBJECT:

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

The CLIP_RECT (20,20 to 120,120) clips the rotated image like this:

; Current coordinate space: the OBJECT.

Note

The drawings use color to highlight the clipping area.

20,20

120,120

clipped OBJECT image

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 51

Next, determine the extent box of this OBJECT element:

 ; Current coordinate space: the OBJECT.

The result is shown below. This is the content that this OBJECT element defines:

OBJECT’s extent box:

95 x 74.65

OBJECT’s origin

25,20

OBJECT’s extent box:

95 x 74.65

PPML Specification Version 1.5 May 31, 2001

Page 52 Copyright  2001 PODi (www.podi.org) www.ppml.org

3. Place the OBJECT in the MARK, and apply the MARK’s VIEW

A MARK can contain several OBJECTs, each with its own position. Thus, when each OBJECT is
complete, its origin can be placed anywhere within the coordinates of its enclosing MARK element.
This is done using the OBJECT element’s Position attribute.

In this example the MARK contains only one OBJECT, positioned at (-20,-20).

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

; Current coordinate space: the MARK.

-20,-20 (offset of OBJECT’s origin in the MARK)

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 53

Next, apply the MARK’s TRANSFORM: scale the OBJECT to 75% of its original size:

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

Result:

; Current coordinate space: the MARK.

Next, apply the MARK’s CLIP_RECT: in this case, it does no extra clipping.

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

The MARK’s content is now complete. The content can now be positioned on the page, as
shown below.

OBJECT’s extent box in the MARK:

71.25 x 56

PPML Specification Version 1.5 May 31, 2001

Page 54 Copyright  2001 PODi (www.podi.org) www.ppml.org

4. Position the MARK on the page.

The only remaining step is to process the MARK element’s Position attribute.

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

; Current coordinate space: the PAGE.

30,40

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 55

The entire MARK is now complete: the content has been marked onto the page.

<MARK Position="30 40">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
</MARK>

The following PostScript code could be placed before the EPS source to produce this result:

30 40 translate % MARK position
0 0 75 75 rectclip % MARK clipping
[0.75 0 0 0.75 0 0] concat % MARK transform
-20 -20 translate % OBJECT position
20.0 20.0 100.0 100.0 rectclip % OBJECT clipping
[0.866 -0.5 0.5 0.866 -25.98 31.7] concat % OBJECT transform
30.0 50.0 120.0 40.0 rectclip % SOURCE clipping
% insert content of file “ppml.eps” here

PPML Specification Version 1.5 May 31, 2001

Page 56 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.20.2 REUSABLE_OBJECT Example

This example renders the same MARK as the previous one, but uses a REUSABLE_OBJECT.

A REUSABLE_OBJECT has this structure:

• The simplest possible REUSABLE_OBJECT contains a VIEW, one OBJECT, and an
OCCURRENCE_LIST with one OCCURRENCE.

• Each OCCURRENCE specifies a VIEW of all the OBJECTs in this REUSABLE_OBJECT.

• A MARK can include a particular OCCURRENCE of a REUSABLE_OBJECT by including an
OCCURRENCE_REF.

• It only makes sense to use REUSABLE_OBJECT if its OCCURRENCEs are used in more than one
MARK; it is probable (but not required) that the PPML Consumer will optimize the OBJECT for
reuse.

To process a REUSABLE_OBJECT, the Consumer must first process each OBJECT inside it. And to
do that, it first processes the SOURCE in the OBJECT. It is the same sequence as is used for
OBJECTs within a MARK:

• Process the SOURCE, applying its ClippingBox if any

• Take the result and transform it using the TRANSFORM from the OBJECT’s VIEW

• Take the result and clip it using the CLIP_RECT from the OBJECT’s VIEW

This produces one OBJECT that will be contained in the REUSABLE_OBJECT.

Now, position the OBJECT in the REUSABLE_OBJECT’s coordinate space.

Repeat the above for each OBJECT in the REUSABLE_OBJECT.

Now, apply the REUSABLE_OBJECT’s VIEW:

• Take the set of (one or more) OBJECTs and transform it using the TRANSFORM from the
REUSABLE_OBJECT’s VIEW

• Take the result and clip it using the CLIP_RECT from the REUSABLE_OBJECT’s VIEW

Now, apply each OCCURRENCE’s VIEW:

• Take the result and transform it using the TRANSFORM from the OCCURRENCE’s VIEW

• Take the result and clip it using the CLIP_RECT from the OCCURRENCE’s VIEW

• Repeat the above for each OCCURRENCE in the OCCURRENCE _LIST

This process produces the final piece of page content for each OCCURRENCE. They are now ready
to be included on a page with an OCCURRENCE_REF. The last step will be to position the content
on the page, using the MARK’s Position attribute.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 57

The following PPML fragment achieves our desired result using a REUSABLE_OBJECT:

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

<MARK Position="30 40">
 <OCCURRENCE_REF Ref="example" />
</MARK>

Note that the Format attribute of the SOURCE has been omitted for clarity.

A PPML Consumer processes this fragment using the following steps.

PPML Specification Version 1.5 May 31, 2001

Page 58 Copyright  2001 PODi (www.podi.org) www.ppml.org

1. Create the OBJECT specified in the REUSABLE_OBJECT.

Use steps 1 and 2 from the previous example to obtain the OBJECT by reading its SOURCE and
applying its VIEW.

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

The result is shown below. This is the content that this OBJECT element defines:

; Current coordinate space: the OBJECT

OBJECT’s extent box:

95 x 74.65

OBJECT’s origin

25,20

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 59

2. Place the OBJECT, and apply the REUSABLE_OBJECT’s and OCCURRENCE’s VIEWs.

A REUSABLE_OBJECT can contain several OBJECTs, each with its own position. Thus, when each
OBJECT is complete, its origin can be placed anywhere within the coordinates of its enclosing
REUSABLE_OBJECT element. This is done using the OBJECT element’s Position attribute.

In this example, the OBJECT is positioned at (-20,-20).

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

; Current coordinate space: the REUSABLE_OBJECT.

-20,-20 (offset of OBJECT’s origin in the REUSABLE_OBJECT)

PPML Specification Version 1.5 May 31, 2001

Page 60 Copyright  2001 PODi (www.podi.org) www.ppml.org

Next, apply the REUSABLE_OBJECT’s VIEW: transform and clip the OBJECT as specified. In this
example, the REUSABLE_OBJECT’s VIEW is empty and no processing is required.

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

Next, apply the OCCURRENCE's TRANSFORM: scale the OBJECT to 75% of its current size:

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 61

OBJECT’s extent box in the OCCURRENCE:

71.25 x 56

Result:

; Current coordinate space: the OCCURRENCE.

Next, apply the OCCURRENCE’s CLIP_RECT: in this case, it does no extra clipping.

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

The OCCURRENCE’s content is now complete.
<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

PPML Specification Version 1.5 May 31, 2001

Page 62 Copyright  2001 PODi (www.podi.org) www.ppml.org

3. Position the OCCURRENCE on the PAGE.

The only remaining step is to apply the MARK element’s Position attribute to the OCCURRENCE
created in step 2:

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

<MARK Position="30 40">
 <OCCURRENCE_REF Ref="example" />
<MARK/>

; Current coordinate space: the PAGE.

The entire MARK is now complete: the content has been marked onto the page.

<MARK Position="30 40">
 <OCCURRENCE_REF Ref="example" />
</MARK>

30,40

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 63

5.20.3 REUSABLE_OBJECT Example

This example renders the same MARK as the previous one, but uses a REUSABLE_OBJECT.

A REUSABLE_OBJECT has this structure:

• The simplest possible REUSABLE_OBJECT contains a VIEW, one OBJECT, and an
OCCURRENCE_LIST with one OCCURRENCE.

• Each OCCURRENCE specifies a VIEW of all the OBJECTs in this REUSABLE_OBJECT.

• A MARK can include a particular OCCURRENCE of a REUSABLE_OBJECT by including an
OCCURRENCE_REF.

• It only makes sense to use REUSABLE_OBJECT if its OCCURRENCEs are used in more than one
MARK; it is probable (but not required) that the PPML Consumer will optimize the OBJECT for
reuse.

To process a REUSABLE_OBJECT, the Consumer must first process each OBJECT inside it. And to
do that, it first processes the SOURCE in the OBJECT. It is the same sequence as is used for
OBJECTs within a MARK:

• Process the SOURCE, applying its ClippingBox if any

• Take the result and transform it using the TRANSFORM from the OBJECT’s VIEW

• Take the result and clip it using the CLIP_RECT from the OBJECT’s VIEW

This produces one OBJECT that will be contained in the REUSABLE_OBJECT.

Now, position the OBJECT in the REUSABLE_OBJECT’s coordinate space.

Repeat the above for each OBJECT in the REUSABLE_OBJECT.

Now, apply the REUSABLE_OBJECT’s VIEW:

• Take the set of (one or more) OBJECTs and transform it using the TRANSFORM from the
REUSABLE_OBJECT’s VIEW

• Take the result and clip it using the CLIP_RECT from the REUSABLE_OBJECT’s VIEW

Now, apply each OCCURRENCE’s VIEW:

• Take the result and transform it using the TRANSFORM from the OCCURRENCE’s VIEW

• Take the result and clip it using the CLIP_RECT from the OCCURRENCE’s VIEW

• Repeat the above for each OCCURRENCE in the OCCURRENCE _LIST

This process produces the final piece of page content for each OCCURRENCE. They are now ready
to be included on a page with an OCCURRENCE_REF. The last step will be to position the content
on the page, using the MARK’s Position attribute.

PPML Specification Version 1.5 May 31, 2001

Page 64 Copyright  2001 PODi (www.podi.org) www.ppml.org

The f ollowing PPML fragment achieves our desired result using a REUSABLE_OBJECT:

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

<MARK Position="30 40">
 <OCCURRENCE_REF Ref="example" />
</MARK>

Note that the Format attribute of the SOURCE has been omitted for clarity.

A PPML Consumer processes this fragment using the following steps.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 65

1. Create the OBJECT specified in the REUSABLE_OBJECT.

Use steps 1 and 2 from the previous example to obtain the OBJECT by reading its SOURCE and
applying its VIEW.

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

The result is shown below. This is the content that this OBJECT element defines:

; Current coordinate space: the OBJECT

OBJECT’s extent box:

95 x 74.65

OBJECT’s origin

25,20

PPML Specification Version 1.5 May 31, 2001

Page 66 Copyright  2001 PODi (www.podi.org) www.ppml.org

2. Place the OBJECT, and apply the REUSABLE_OBJECT’s and OCCURRENCE’s VIEWs.

A REUSABLE_OBJECT can contain several OBJECTs, each with its own position. Thus, when each
OBJECT is complete, its origin can be placed anywhere within the coordinates of its enclosing
REUSABLE_OBJECT element. This is done using the OBJECT element’s Position attribute.

In this example, the OBJECT is positioned at (-20,-20).

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

; Current coordinate space: the REUSABLE_OBJECT.

-20,-20 (offset of OBJECT’s origin in the REUSABLE_OBJECT)

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 67

Next, apply the REUSABLE_OBJECT’s VIEW: transform and clip the OBJECT as specified. In this
example, the REUSABLE_OBJECT’s VIEW is empty and no processing is required.

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

Next, apply the OCCURRENCE's TRANSFORM: scale the OBJECT to 75% of its current size:

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

PPML Specification Version 1.5 May 31, 2001

Page 68 Copyright  2001 PODi (www.podi.org) www.ppml.org

Result:

; Current coordinate space: the OCCURRENCE.

Next, apply the OCCURRENCE’s CLIP_RECT: in this case, it does no extra clipping.

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

The OCCURRENCE’s content is now complete.

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>

OBJECT’s extent box in the OCCURRENCE:

71.25 x 56

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 69

 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

PPML Specification Version 1.5 May 31, 2001

Page 70 Copyright  2001 PODi (www.podi.org) www.ppml.org

3. Position the OCCURRENCE on the PAGE.

The only remaining step is to apply the MARK element’s Position attribute to the OCCURRENCE
created in step 2:

<REUSABLE_OBJECT>
 <OBJECT Position=“-20 -20”>
 <SOURCE Dimensions="150 100" ClippingBox="30 50 160 90">
 <EXTERNAL_DATA Src="ppml.eps" />
 </SOURCE>
 <VIEW>
 <TRANSFORM Matrix="0.866 -0.5 0.5 0.866 -25.98 31.7" />
 <CLIP_RECT Rectangle="20 20 120 120" />
 </VIEW>
 </OBJECT>
 <VIEW />
 <OCCURRENCE_LIST>
 <OCCURRENCE Name="example">
 <VIEW>
 <TRANSFORM Matrix="0.75 0 0 0.75 0 0" />
 <CLIP_RECT Rectangle="0 0 75 75" />
 </VIEW>
 </OCCURRENCE>
 </OCCURRENCE_LIST>
</REUSABLE_OBJECT>

<MARK Position="30 40">
 <OCCURRENCE_REF Ref="example" />
</MARK>

; Current coordinate space: the PAGE.

The entire MARK is now complete: the content has been marked onto the page.

<MARK Position="30 40">
 <OCCURRENCE_REF Ref="example" />
</MARK>

30,40

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 71

Chapter 6:
Print Layout –
Page Layout and Imposition

6.1 Introduction

6.1.1 Imposition in personalized printing

In addition to its personalization features, the PPML language includes another important feature not
found in most print languages: imposition. It’s important to understand what imposition is and is not,
especially in the context of personalized documents, which are a main purpose of the PPML language.

• Imposition is the process of positioning page images on sheets of paper in the printer (or in a
digital printing press), as part of the process of producing finished documents.

• In addition to the page images, various marks can be added to the sheets, to aid in the
production process. For instance, marks can be added to show where the paper should be
folded or trimmed.

• Imposition has no effect on the content of any individual page – it only affects where the pages
are placed on a press sheet.

Note: in this document, “imposition” (lowercase) refers to the functions described above. It does not
refer to processing of the IMPOSITION element. “Imposing Consumers” are ones that process the
SHEET LAYOUT element.

Personalized printing requires imposition instructions that have never before been necessary.

In non-personalized printing, imposition is the placement of unchanging master pages onto a
reproduction master, such as a printing plate.

But in digital printing of personalized documents, every copy is unique. Therefore, in addition to the
regular imposition instructions, the language must also specify where to place each sequential copy of
the document (each Instance Document). Sometimes the next document starts on a separate sheet, some-
times it starts in the next row of the same sheet, sometimes it starts in the next column of the same sheet.

Note

PPML Consumers are not required to support the SHEET_ LAYOUT element, nor the
Ncopies and Collate attributes on PRINT_LAYOUT. This means a complex
production job intended for a large- format digital printing press can be proof-
printed on a simpler, small-format desktop printer. Similarly, a single-page
production printer can print the dataset’s document content stream (including
copies and collation), ignoring imposition instructions.

It also means a post-processing system can extract the document content stream
(Jobs, Documents and Pages) from a PPML dataset, and use other methods to
assign pages to sheets, add sheet marks, etc.

PPML Specification Version 1.5 May 31, 2001

Page 72 Copyright  2001 PODi (www.podi.org) www.ppml.org

6.1.2 Overview of PPML elements for laying out the print job

This section provides a conceptual overview of how PPML pages are printed onto sheets as part of
the overall production process. Each element is defined in its own section below.

Top level elements

<PRINT_LAYOUT> includes:
 <PAGE_LAYOUT> defines page size and cropping.
 <SHEET_LAYOUT> defines the size of the sheet, the sheet marks (e.g. crop marks),
 and all imposition instructions

Sheet layout elements

Sheet layout elements include imposition elements plus certain production marks that are associated
with each sheet.

<SHEET_LAYOUT> includes:
 <SHEET_MARK>

 Imposition elements

Imposition elements

Imposition elements contain signature definitions and REPEAT elements:

 <IMPOSITION> includes:
 <SIGNATURE> or
 <REPEAT>

Impositions can have a Name and can be referenced with IMPOSITION_REF.

Signature elements

Finally, the SIGNATURE element (and its surrounding REPEATs, if any) define what is to be printed
on a single sheet:

<SIGNATURE>

 <CELL> defines the page order of each available position in the imposition layout:
 which location should receive the first Page, the second Page, and so on,
 and whether the Page should be rotated.
 Gutter locations & sizes (spaces between cells)

 Fold marks

 Trim Marks

6.1.3 Production Marks

“Production marks” are marks added to the sheet to assist in production; they are not part of
document content. The Consumer may add production marks to a sheet after all the pages have
been imaged, or before the pages, or both. Production marks and PAGEs are imaged in the order
they appear.

The following sections define each of the elements presented in this overview.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 73

6.2 The <PRINT_LAYOUT> Element

6.2.1 Description

PRINT_LAYOUT is the master element that includes the page dimensions and how the Pages are to
be laid out onto sheets by the Consumer.

6.2.2 Model

PRINT_LAYOUT (PAGE_LAYOUT, SHEET_LAYOUT?)

6.2.3 Example

The following illustrates a simple setup for printing letter-size pages onto 12x18” sheets. (Lower-
level elements are omitted for this illustration.)

<PRINT_LAYOUT>

 <PAGE_LAYOUT TrimBox=”0 0 612 792”/>

 <SHEET_LAYOUT HSize=”1296” VSize=”864”>

 ...

 </SHEET_LAYOUT>

</PRINT_LAYOUT>

6.2.4 Attributes

Attribute

Required
/Optional

Type

Description

Ncopies Optional Integer How many copies to print of each sheet (for an imposing Consumer) or
each page (for a non-imposing Consumer). Default=1.

Collate Optional Keyword “Document” (default) = print the entire first copy of the document
(all sheets, all pages), then print the entire second copy of the same
document, etc.

“Job” = print one copy of the entire Job (one copy of each document),
then print the entire Job again (another copy of each document), etc.

“No” = print all copies of the first sheet (or page) of the first document,
then print all copies of the second sheet (or page) of that document, etc.

Notice the distinction between the non-imposing consumer (which sees only pages) and the
imposing consumer (which sees sheets). Both Ncopies and Collate make sense for both
environments. The non-imposing consumer will copy and collate individual pages, while an
imposing consumer will copy and collate full sheets.

Generally, uncollated output makes fewer demands on the Consumer’s memory and may thus be
the preferred mode when outputting to lower-powered products.

6.2.5 Context

PRINT_LAYOUT can occur in PPML and JOB.

PPML Specification Version 1.5 May 31, 2001

Page 74 Copyright  2001 PODi (www.podi.org) www.ppml.org

6.3 The <PAGE_LAYOUT> Element

6.3.1 Description

The PAGE_LAYOUT element describes page cropping information when using PPML’s imposition.
This element appears similar to PAGE_DESIGN because both have a TrimBox and BleedBox
attribute. See section 4.6.6 for a discussion of the similarities and differences.

The PAGE_LAYOUT element states the rectangular dimensions of the Page. Three different
dimensions are given: the trim box, the bleed box, and the bounding box. Example:

<PAGE_LAYOUT TrimBox=”0 0 612 792”

 BleedBox=”-18 -18 630 810”

 BoundingBox=”-72 -72 684 864”

 />

The “Trim Box”

TrimBox indicates the final page size
after trimming. The lower left corner of
the trimmed page is the origin: when
BleedBox or BoundingBox extends
outside the trimmed page, its lower left
corner will have negative coordinates,
as shown in the PAGE_LAYOUT example
above.

The “Bleed Box”

“Bleed” is the practice of intentionally allowing page content to extend a small distance beyond
TrimBox. This is done to compensate for normal imperfections in the finishing process: if the
trimming is not perfectly accurate, blank paper might be visible along the edge of the page.
Extending the page image beyond TrimBox (i.e. using bleeds) avoids this.

The PAGE_LAYOUT element’s BleedBox attribute specifies how far the image area is allowed to
extend outside the page, but the allowed amount may not always be used. For instance, at the
edge of a sheet, the entire specified bleed area is used. But within an imposed sheet (i.e. between
two adjacent pages), the bleed extends into the gutter between the pages (if there is one) as
follows:

• If there is no space (gutter) between the pages, then no bleed is needed at that edge. On
that side, the Consumer crops the content of each page at each Page’s TrimBox (which in
this case is also the line where the two pages meet). At the outside borders of the signature
the bleed would still be used.

• If there is a gutter, and it’s less than or equal to the bleed, then the bleed fills the gutter.
(The bleed from each page stops in the middle of the gutter.)

• If the gutter is wider than the bleed, the Consumer crops the page image at the BleedBox.

If no BleedBox is specified, BleedBox defaults to TrimBox.

TrimBox:
Finished page

= 8½ x 11”

BleedBox =
9 x 11½”
(1/4” bleed all sides;
all page content is
cropped to this box)

BoundingBox =
10½ x 13”
(1” from each side of
TrimBox; an alternate
cropping limit)

 PPML page origin
(used for positioning

the page in the imposition cell) 0,0

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 75

TrimBox should not extend beyond BleedBox, but if it does, TrimBox will prevail.

The “Bounding Box”

The bounding box states the farthest uncropped extent of all objects on the page. In rare
circumstances this may be useful as an alternative cropping boundary. It is expected to be used less
frequently than BleedBox but will be of value in appropriate applications.

For instance, a PPML Page could consist of a single full-page object created by a desktop
publishing application. Output from such applications typically includes production marks that fall
outside the page area: crop marks, file identification information, etc. When the PPML page
containing this object is imposed, the Producer has typically set BleedBox to a small value, so that
all the application’s production mark information is cropped out.

But when the same PPML page is proof-printed on a non-imposing printer, it may be preferable not
to crop out those marks. With BoundingBox, a Producer can indicate the farthest uncropped extent
of all objects on the page. The Consumer can honor BoundingBox instead of BleedBox, which
allows printing page proofs that show the original application-provided marks outside the bleed
area.

If BoundingBox is not specified, it defaults to BleedBox. If BleedBox extends beyond
BoundingBox, then BoundingBox is set to the intersection of the two.

6.3.2 Model

PAGE_LAYOUT EMPTY

6.3.3 Attributes

Attribute

Required
/Optional

Type

Description

TrimBox Required Number ✕4 Coordinates, in 1/72”, of the trimmed size of the final
page (i.e. after finishing).

BleedBox Optional Number ✕4 Coordinates, in 1/72”, of the page’s bleed area. Defaults
to TrimBox.

BoundingBox Optional Number ✕4 Coordinates, in 1/72”, of the maximum area that may
need to be printed. Defaults to BleedBox.

6.3.4 Context

The PAGE_LAYOUT element appears within PRINT_LAYOUT and SHEET_LAYOUT.

6.3.5 Page orientation

All dimensions in the attributes are to be listed in “upright” orientation. For instance, a portrait
letter-size page will have TrimBox=“0 0 612 792” and a landscape letter-size page will have
TrimBox=“0 0 792 612”. Thus, no separate Orientation attribute is needed.

Note that any Page may be rotated when it is used in IMPOSITION and/or SHEET_LAYOUT. But
the Page itself, and its content, are independent of imposition and printing.

PPML Specification Version 1.5 May 31, 2001

Page 76 Copyright  2001 PODi (www.podi.org) www.ppml.org

6.4 The <SHEET_LAYOUT> Element

6.4.1 Description

In general, the SHEET_LAYOUT element contains all the elements that define what goes where on
which sheet. It declares any marks that are associated with the sheet itself and what imposition
instructions to use.

6.4.2 Model

SHEET_LAYOUT (SHEET_MARK | (PAGE_LAYOUT?, (IMPOSITION | IMPOSITION_REF)))*

6.4.3 Attributes

Attribute

Required
/Optional

Type

Description

Hsize Required Number Horizontal size of the sheet in 1/72”

Vsize Required Number Vertical size of the sheet in 1/72”

GangDocuments Optional Boolean Yes means all Instance Documents in a Job are to be
concatenated into a single stream of pages for imposition.
No (the default) means each Instance Document must start a
new sheet. See also the PageOrder attribute of the CELL
element (section 6.9.5, “Using expressions in the PageOrder
attribute”).

6.4.4 Context

SHEET_LAYOUT occurs within PRINT_LAYOUT.

6.4.5 Usage

Note that the model allows SHEET_MARK elements to come before or after imposition, or before
and after Imposition elements. The Consumer must image the sheet in the sequence specified in
SHEET_LAYOUT.

If SHEET_LAYOUT contains no child elements, then it defines nothing but the sheet size – it defines
no imposition or sheet marks. In this case each page is centered on a sheet. If the PAGE’s BleedBox
is bigger than the sheet size, then the sheet size is used for cropping.

An optional PAGE_LAYOUT element may precede IMPOSITION or IMPOSITION_REF, in which
case it replaces the previous PAGE_LAYOUT. This allows combining several different imposition
schemes on the same sheet, including (optionally) different page sizes.

One set of page numbers applies to the whole sheet, even if it contains more than one
IMPOSITION.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 77

6.5 The <SHEET_MARK> Element

6.5.1 Description

The SHEET_MARK element places a Reusable Object at a specified location on every sheet.
Applications of this feature are expected to include color control strips, the print shop’s logo, or job
ID information.

Note that a sheet mark may be placed anywhere on the sheet: the Producer may place sheet marks
on top of page image areas if desired.The name of the Occurrence Reference is resolved
immediately when the Sheet Mark element is encountered. That is, the OCCURRENCE content object
named in the OCCURRENCE_REF element is retrieved immediately, such that even if the
OCCURRENCE is renamed while the job is running, the appearance of the SHEET_MARK will not be
affected.

Note that this element can only exist at the PPML or Job level (not Document or Page) because its
enclosing SHEET_LAYOUT element can only appear at those levels. Therefore, the Occurrence used
in a Sheet Mark cannot have a scope of Document or Page.

6.5.2 Model

SHEET_MARK (OCCURRENCE_REF)

6.5.3 Attributes

Attribute

Required
/Optional

Type

Description

Position Required Number ✕2 Location where the bottom left corner of the mark’s
bounding box is to be placed on the sheet.

Face Optional Keyword Whether the Sheet Mark is to appear on the top of the
sheet (Face=“Up”) or bottom of the sheet (Face=“Dn”).
Default=Up.

6.5.4 Context

SHEET_MARK occurs in SHEET_LAYOUT

6.5.5 Future considerations: variable sheet marks

Future versions may include the ability to imprint variable information in a sheet mark. Examples
might include the date and time of the press run, a text string to identify which machine printed the
sheets, a sheet number within the run or within the job, and so on.

PPML Specification Version 1.5 May 31, 2001

Page 78 Copyright  2001 PODi (www.podi.org) www.ppml.org

6.6 The <IMPOSITION> Element

6.6.1 Description

The IMPOSITION element creates an imposition template, which immediately becomes the active
imposition. The optional Name attribute allows saving it as a reusable template so it can be
recalled with IMPOSITION_REF.

The IMPOSITION element can have two possible content structures:

• For multi-sheet applications, IMPOSITION can contain a SIGNATURE, e.g.:

<IMPOSITION>

 <SIGNATURE> ... </SIGNATURE>

</IMPOSITION>

• For applications where the document is smaller than one sheet, the IMPOSITION element can
contain one REPEAT element (which may be nested) around one SIGNATURE element,
for instance:

<IMPOSITION>

 <REPEAT Direction="Stack">

 <REPEAT Direction="Hor">

 <REPEAT Direction="Ver">

 <SIGNATURE> ... </SIGNATURE>

 </REPEAT>

 </REPEAT>

 </REPEAT>

</IMPOSITION>

6.6.2 Model

IMPOSITION (SIGNATURE | REPEAT)

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 79

6.6.3 Attributes

Attribute

Required
/Optional

Type

Description

Name Optional String Optional identifying string for reference in a subsequent
IMPOSITION_REF element.

Environment Required if
Scope=

“Global”;
not needed
otherwise

String Specifies the environment in which the Imposition should
be defined. (There is no default environment.)

Scope Optional Keyword Specifies the scope of this Imposition template’s use.
Possible values for Scope are Global, PPML, and
Job. By default, the scope is the containing element in
which the imposition is defined. A higher value may be
specified in this attribute, but a lower value is an error.

Rotation Optional Integer Rotation of the IMPOSITION content structure (the
imposed set of signatures) relative to the sheet,
counterclockwise: 0, 90, 180, 270 degrees. Default=0.

Position Optional Number ✕2 Location where the bottom left corner of the rotated
IMPOSITION content structure is to be placed on the
sheet. If the Position attribute is not used, the entire
structure is centered on the sheet.

The imposition content structure is the logical structure
that contains all the cells (including any empty cells) in
the imposition scheme. It does not include any trim or
fold marks.

6.6.4 Context

IMPOSITION can occur in SHEET_LAYOUT, JOB, and PPML.

PPML Specification Version 1.5 May 31, 2001

Page 80 Copyright  2001 PODi (www.podi.org) www.ppml.org

6.7 The <IMPOSITION_REF> Element

6.7.1 Description

The IMPOSITION_REF element recalls an imposition template that was previously defined. This
enables the convenience of creating a library of standard imposition setups and reusing them.

6.7.2 Model

IMPOSITION_REF EMPTY

6.7.3 Attributes

Attribute

Required
/Optional

Type

Description

Name Required String Name attribute of the imposition template previously defined.

Environment Optional String The environment in which the name of a Global imposition tem-
plate should be interpreted. (This attribute is required if the scope
of the template is Global; otherwise, this attribute has no meaning.)

Rotation Optional Number Rotation of the IMPOSITION content structure, counterclockwise:
0, 90, 180, 270 degrees. Default=0.

Position Optional Number ✕2 Location where the bottom left corner of the IMPOSITION content
structure is to be placed on the sheet. If the Position attribute is not
used, the entire structure is centered on the sheet.

6.7.4 Context

The IMPOSITION_REF element occurs in SHEET_LAYOUT.

6.7.5 Implementation notes

Calling for a stored imposition template by name has advantages but also has a side effect.
Producers should be conscious of this.

One advantage is that the dataset can be marginally smaller. Another is that it may be simpler for
the Producer to output a simple name than to regenerate all the imposition instructions. Perhaps
most important, though, is that if a dataset uses IMPOSITION_REF to call for a template by name,
then the latest version of that template will automatically be retrieved. This means that if a shop has
refined its template, the updates will automatically be implemented in any dataset that uses that
template.

But it also means that the dataset no longer has complete control of the imposition: by definition,
IMPOSITION_REF means “I don’t care what imposition is stored under this name – use it.”

If the Producer requires absolute control of the imposition for a job, it should explicitly define the
imposition in the dataset, using IMPOSITION and its child elements. (The dataset can still use
IMPOSITION_REF to call the imposition by name later in the dataset; the point is that the imposition
is only certain if it’s defined within the dataset that references it.)

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 81

6.8 The <SIGNATURE> Element

6.8.1 Description

A signature is a set of one or more pages from an Instance Document, printed on a single sheet
of paper. The pages are arranged in a specific sequence, and are printed on one or both sides of
the sheet.

The SIGNATURE element defines a uniform cell grid defined by Nrows and Ncols. The size of the
cells in the grid is not specified by the imposition layout, but is defined by the TrimBox attribute of
the PAGE_LAYOUT of the document that is imposed. The HOR_GUTTER and VER_GUTTER elements
define the spacing between the cells in the grid.

Note that every cell has the same size. Specifically, the Rotation attribute of the CELL is not used
to determine the size of a cell.

Once this grid is defined, the BleedBox in the PAGE_LAYOUT defines the clipping rectangle for
each cell depending on the gutters and the relative position in the grid.

The Rotation and Position in the IMPOSITION element determine how and where this grid is
positioned.

6.8.2 Model

SIGNATURE (CELL+, HOR_TRIM_MARKS?, VER_TRIM_MARKS?,

HOR_GUTTER*, VER_GUTTER*, HOR_FOLD_MARKS*, VER_FOLD_MARKS*)

6.8.3 Attributes

Attribute

Required
/Optional

Type

Description

Nrows Required Integer The number of rows in this signature.

Ncols Required Integer The number of columns in this signature.

PageCount Optional Integer The number of different pages consumed by this signature.
(See section 6.8.5 below.) Default is the number of CELL
elements in this signature.

6.8.4 Context

The SIGNATURE element can occur in IMPOSITION and REPEAT.

6.8.5 PageCount applications

PageCount specifically states how many different pages the Producer has assigned to this
Signature. Typically this equals the number of CELL elements, but that is not required.

For instance, in an eight-page Signature the Producer may choose to assign only four or six pages
to the signature, and that’s the number that would be assigned to PageCount. As another example,
a Producer may want to assign the same page to multiple locations in the same signature – for
instance it may duplicate the second page on the signature, for some reason. In that case when the

PPML Specification Version 1.5 May 31, 2001

Page 82 Copyright  2001 PODi (www.podi.org) www.ppml.org

Producer calculates PageCount, it would ignore those duplicates, counting only how many different
pages are assigned to the Signature.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 83

6.9 The <CELL> Element

6.9.1 Description

The CELL element assigns Pages to specific locations on a Signature. For each Page, it specifies
the row and column position within the signature, whether the Page is to be printed on the face-up
or face-down side of the sheet, and whether the page content is to be rotated in the cell.

One CELL element may be used for each page position on either side of the signature. No CELL
element has to be specified for positions that are empty.

The TrimBox attribute of the PAGE_LAYOUT used to instantiate the IMPOSITION template
determines the actual size of every Cell within the Signature.

The Rotation attribute of the CELL determines how the page content is placed inside the Cell. It
does not affect its size or bleed area. E.g. if the Rotation is 90, the page content is rotated 90
degrees counterclockwise around the center of the cell.

No trim marks will be generated for missing cells.

6.9.2 Model

CELL EMPTY

6.9.3 Attributes

Attribute

Required
/Optional

Type

Description

Row Required Integer Row number of the cell being defined. Top row=1.

Col Required Integer Column number of the cell being defined. Left column=1.

Face Optional Keyword Whether the Page is to appear on the top of the sheet
(Face=“Up”) or bottom of the sheet (Face=“Dn”).
Default=Up.

PageOrder Required String Defines the sequence number of the Page to be placed in
this cell. Can be an integer or an expression. See
description and example in paragraphs 6.9.5 and 6.9.6
below.

Rotation Optional Integer Rotation of the Page, counterclockwise: 0, 90, 180, 270.
Default=0.

6.9.4 Context

The CELL element occurs in SIGNATURE.

PPML Specification Version 1.5 May 31, 2001

Page 84 Copyright  2001 PODi (www.podi.org) www.ppml.org

6.9.5 Using expressions in the PageOrder attribute

Expressions can use the operators +, – , *, /, and parentheses, operating on integers and two
variables: s for sheet number (starting at 1) and n for number of pages to be imposed. Expressions
are evaluated with normal operator precedence. Multiplication must be expressed by explicitly
including the * operator – that is, use “2*s”, not “2s”. Remainders are discarded.

For print applications where page count varies from Instance Document to Instance Document,
PPML imposition templates can automatically assign pages to the correct Signature and Cell
position. To use this feature, the Producer should specify the PageOrder attribute using expressions
based on n.

The variable n depends on p, the total number of pages that need to be imposed.
This number p on its turn depends on the value of the GangDocuments attribute of
SHEET_LAYOUT:

• GangDocuments=“No” means each Instance Document must start on a new Sheet. In this case,
p refers to the number of pages in the current Instance Document, and the Consumer will
evaluate the PageOrder expression separately for each Instance Document.

• GangDocuments=“Yes” means all Instance Documents are to be concatenated into a single
stream of pages for imposition. In this case, p refers to the total page count (the sum of page
counts for all documents in the Job) and PageOrder refers to a page’s position in the
concatenated stream of pages, not its position within its parent Document.

In both cases, n is derived from p according to the following rule: let c be the sum of all the
PageCount attributes of all the SIGNATURE elements in the SHEET_LAYOUT, then n is p rounded up
to the nearest multiple of c. The number of signatures generated will be n/c.

Any cell that has a resulting PageOrder attribute greater than p or less than 1 is left blank. For
instance, if c equals 4, and an Instance Document contains 7 pages, then n for that document is 8,
and the last cell will have no content.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 85

6.9.6 Examples

This example shows an eight-page job being assigned to the cells of two four-page signatures.

The cell assignments shown in the above diagram for the eight pages are as follows. Pages that get
assigned to the second signature are shown center-aligned so they’re easy to recognize; notice that
within each signature, the page sequence (as shown in the illustrations) is Down Up Up Down.

Page # Signature Row Column Face

1 1 1 1 Down

2 1 1 1 Up

3 2 1 1 Down

4 2 1 1 Up

5 2 1 2 Up

6 2 1 2 Down

7 1 1 2 Up

8 1 1 2 Down

This two-signature imposition can be described in a more general form, so that it handles any
number of pages, and will automatically generate additional signatures as needed to
accommodate those pages. This is done by using one 4-cell SIGNATURE element, with each
PageOrder attribute being an expression ƒ of s, the sheet number in the above table. The general
form will be as follows. (Note: “ƒn(s)” is not part of the PPML code – it will be explained below.)

<IMPOSITION Name="2 x 2-UP Bundled">

 <SIGNATURE Nrows="1", Ncols="2">
 <CELL Row="1" Col="1" PageOrder= ƒ1(s) Face="Up" Rotate="0"/>
 <CELL Row="1" Col="1" PageOrder= ƒ2(s) Face="Dn" Rotate="0"/>
 <CELL Row="1" Col="2" PageOrder= ƒ3(s) Face="Up" Rotate="0"/>
 <CELL Row="1" Col="2" PageOrder= ƒ4(s) Face="Dn" Rotate="0"/>
 </SIGNATURE>

</IMPOSITION>

Each of the expressions ƒ1(s) … ƒ4(s) is of the form ƒn(s)=a*s −b.

The following illustrates how to determine ƒ2(s), the expression for the second CELL element.

We find the values of a and b by rewriting the expression “a*s −b” for the two entries in the above
table that have Row=1, Col=1 and Face=Down (the first and third entry from the table). We know
the result must be the page number shown in the first column of the table:
1 = a*1 – b (first entry from table)

After folding: Sheet 1 Sheet 2

PPML Specification Version 1.5 May 31, 2001

Page 86 Copyright  2001 PODi (www.podi.org) www.ppml.org

3 = a*2 – b (third entry from table)

Resolving this for a and b gives a=2 and b=1. So the second CELL element becomes:
<CELL Row="1" Col="1" PageOrder="2*s-1" Face="Dn" Rotate="0"/>

Doing this for all four cells, the final code is:
<IMPOSITION Name="2 x 2-UP Bundled">

 <SIGNATURE Nrows="1", Ncols="2">
 <CELL Row="1" Col="1" PageOrder="2*s" Face="Up" Rotate="0"/>

 <CELL Row="1" Col="1" PageOrder="2*s-1" Face="Dn" Rotate="0"/>

 <CELL Row="1" Col="2" PageOrder="9-2*s" Face="Up" Rotate="0"/>

 <CELL Row="1" Col="2" PageOrder="10-2*s" Face="Dn" Rotate="0"/>

 </SIGNATURE>

</IMPOSITION>

The true power of using expressions in the PageOrder attribute is shown by generalizing the above
for any n-page document, n being a multiple of 4:
<IMPOSITION Name="2 x 2-UP Bundled">

 <SIGNATURE Nrows="1", Ncols="2">
 <CELL Row="1" Col="1" PageOrder="2*s" Face="Up" Rotate="0"/>

 <CELL Row="1" Col="1" PageOrder="2*s-1" Face="Dn" Rotate="0"/>

 <CELL Row="1" Col="2" PageOrder="n+1-2*s" Face="Up" Rotate="0"/>

 <CELL Row="1" Col="2" PageOrder="n+2-2*s" Face="Dn" Rotate="0"/>

 </SIGNATURE>

</IMPOSITION>

If we instead want to fold each sheet first, then gather them together, the page assignment scheme
would follow the same generic sequence but it would allocate pages 1-4 to the first signature, and
5-8 to the second signature, as follows:

Page

Signature Row Column Face

1 1 1 1 Down

2 1 1 1 Up

3 1 1 2 Up

4 1 1 2 Down

5 2 1 1 Down

6 2 1 1 Up

7 2 1 2 Up

8 2 1 2 Down

The resulting imposition is:
<IMPOSITION Name="2 x 2-UP">

 <SIGNATURE Nrows="1", Ncols="2">
 <CELL Row="1" Col="1" PageOrder="4*s-2" Face="Up" Rotate="0"/>

 <CELL Row="1" Col="1" PageOrder="4*s-3" Face="Dn" Rotate="0"/>

 <CELL Row="1" Col="2" PageOrder="4*s-1" Face="Up" Rotate="0"/>

 <CELL Row="1" Col="2" PageOrder="4*s-0" Face="Dn" Rotate="0"/>

 </SIGNATURE>

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 87

</IMPOSITION>

Notice that in this second example, every sheet is independent from the previous one, which is
reflected by the PageOrder expressions being independent of n.

6.9.7 Cell Rotation Example

This example shows the effect of the Rotation attribute in a CELL. Note that some attributes have
been omitted for clarity.

<SHEET_LAYOUT>
 <IMPOSITION>
 <SIGNATURE Nrows="2" Ncols="3">
 <CELL Row="1" Col="1" PageOrder="3*s" Rotation=”0” />
 <CELL Row="2" Col="2" PageOrder="3*s+1" Rotation=”270” />
 <CELL Row="1" Col="3" PageOrder="3*s+2" Rotation=”180” />
 </SIGNATURE>
 </IMPOSITION>
</SHEET_LAYOUT>

The input document
contains these three pages :

The active PAGE_LAYOUT
is as follows:

Executing the imposition
gives the following result:

Note that the trim and bleed boxes are shown in this drawing. They will not be visible in the actual
PPML output.

Bleed Box

Trim Box

PPML Specification Version 1.5 May 31, 2001

Page 88 Copyright  2001 PODi (www.podi.org) www.ppml.org

6.10 The <HOR_TRIM_MARKS> Element

6.10.1 Description

Trim Marks are Reusable Object
Occurrences that can be
automatically placed by the
Consumer on each sheet, at the
corners of the final pages, on
both sides of the sheet (front and
back), using the
HOR_TRIM_MARKS and

VER_TRIM_MARKS elements.

Each mark is
centered on one
boundary of the
TrimBox. The
attribute MarkDist
specifies the mark’s
distance from the
corner of the page.

The mark is printed
without rotation or
mirroring – for
instance the
vertical trim mark
at the top of the
page will be
identical, relative
to the sheet, to the
mark at the bottom
of the page.

If a signature has pages that touch, or nearly touch, as
shown at right, some trim marks would fall onto the
TrimBox of their neighboring pages. A trim mark is
suppressed if any part of its bounding box falls closer than
MarkDist to a neighboring trim box. An optional attribute
AllowOnPage="Yes" (default = "No") can overrule this
suppression.

The OCCURRENCE_REF may only refer to a reusable object

Vertical
Trim Mark

Horizontal
Trim Mark

MarkDist

Any trim mark
is suppressed
if it would fall
on or inside
another page’s
trim box

Mark
Dist

Mark
Dist

Extent boxes
for the Trim Mark’s
OCCURRENCE object

CELL
CORNER

• Mark is to be centered
on the page edge.

• Closest edge of the
OCCURRENCE
is positioned MarkDist
away from the cell corner.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 89

with a scope at least as high as the scope of the IMPOSITION element enclosing this mark. It is an
error to refer to a mark which is in scope, but which has a scope lower than that of the enclosing
IMPOSITION element.

6.10.2 Model

HOR_TRIM_MARKS (OCCURRENCE_REF)

6.10.3 Attributes

Attribute

Required
/Optional

Type

Description

MarkDist Optional Number Distance of the mark away from the page, in 1/72”

AllowOnPage Optional Boolean Default= “No”. If Yes, Trim Marks will not be suppressed
if they fall on or inside another page’s trim box.

6.10.4 Context

HOR_TRIM_MARKS can occur in SIGNATURE.

6.10.5 Example

The following example shows how Trim Marks would be coded using two Reusable Object
Occurrences named VerTrim and HorTrim. Each is to be positioned six points from the corner of its
page.

Note that the Trim Marks elements are unaffected by how many cells are in the signature; they
simply declare whether or not the signature has trim marks.

<IMPOSITION>

 <SIGNATURE Nrows="1" Ncols="2">

 <CELL .../>

 <CELL .../>
 <HOR_TRIM_MARKS MarkDist=”6”>

 <OCCURRENCE_REF Ref=”HorTrim”>

 </HOR_TRIM_MARKS>

 <VER_TRIM_MARKS MarkDist=”6”>

 <OCCURRENCE_REF Ref=”VerTrim”>

 </HOR_TRIM_MARKS>

 </SIGNATURE>

</IMPOSITION>

PPML Specification Version 1.5 May 31, 2001

Page 90 Copyright  2001 PODi (www.podi.org) www.ppml.org

6.11 The <VER_TRIM_MARKS> Element

6.11.1 Description

The VER_TRIM_MARKS element is the vertical equivalent to HOR_TRIM_MARKS. See
HOR_TRIM_MARKS (section 6.10) for description, illustration, and example.

The OCCURRENCE_REF may only refer to a reusable object with a scope at least as high as the
scope of the IMPOSITION element enclosing this mark. It is an error to refer to a mark which is in
scope, but which has a scope lower than that of the enclosing IMPOSITION element.

6.11.2 Model

VER_TRIM_MARKS (OCCURRENCE_REF)

6.11.3 Attributes

Attribute

Required
/Optional

Type

Description

MarkDist Optional Number Distance of the mark away from the page, in 1/72”

AllowOnPage Optional Boolean Default= “No”. If Yes, Trim Marks will not be suppressed
if they fall on or inside another page’s trim box.

6.11.4 Context

VER_TRIM_MARKS can occur in SIGNATURE.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 91

6.12 The <HOR_GUTTER> Element

6.12.1 Description

The horizontal gutter is a horizontal strip of space between two rows of cells in a signature.

The BetweenRows attribute specifies the set of rows between which this gutter should be inserted.
For instance, the following code shows a signature with NRows=”3” and gutters between all rows:

<IMPOSITION>

 <SIGNATURE Nrows="3" Ncols="2">

 <CELL Row="1" Col="1" PageOrder="3" Face="Up" Rotate="180"/>

 ...

 <CELL Row="2" Col="2" PageOrder="8" Face="Dn" Rotate="0"/>
 <HOR_GUTTER BetweenRows="1 3" Distance="18"/>

 </SIGNATURE>

</IMPOSITION>

It is also possible to specify a different HOR_GUTTER element for each space between rows:

<IMPOSITION>

 <SIGNATURE Nrows="2" Ncols="2">

 <CELL Row="1" Col="1" PageOrder="3" Face="Up" Rotate="180"/>

 ...

 <CELL Row="2" Col="2" PageOrder="8" Face="Dn" Rotate="0"/>
 <HOR_GUTTER BetweenRows="1 2" Distance="36"/>

 <HOR_GUTTER BetweenRows="2 3" Distance="18"/>

 </SIGNATURE>

</IMPOSITION>

Each HOR_GUTTER element affects only the rows identified in BetweenRows – previous gutter
settings for other gutters are unaffected. For instance, this code for an 8-row signature defines
uniform spacing for all rows, then changes the value for the middle gutter to 1”:

 <SIGNATURE Nrows="8" Ncols="1">

 ...
 <HOR_GUTTER BetweenRows="1 8" Distance="18"/>

 <HOR_GUTTER BetweenRows="4 5" Distance="72"/>

 </SIGNATURE>

6.12.2 Model

HOR_GUTTER EMPTY

PPML Specification Version 1.5 May 31, 2001

Page 92 Copyright  2001 PODi (www.podi.org) www.ppml.org

6.12.3 Attributes

Attribute

Required
/Optional

Type

Description

Distance Required Number Size (height) of the gutter, in 1/72”

BetweenRows Required Integer ✕2 Identifies the set of rows between which this Distance
applies. See examples. Top row = 1.

6.12.4 Context

HOR_GUTTER occurs in SIGNATURE.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 93

6.13 The <VER_GUTTER> Element

6.13.1 Description

The VER_GUTTER element is identical to HOR_GUTTER except that it defines a vertical strip of space
between two columns, not rows, of cells in a signature. See the description of HOR_GUTTER, section
6.12.1, for examples and explanation of attributes.

6.13.2 Model

VER_GUTTER EMPTY

6.13.3 Attributes

Attribute

Required
/Optional

Type

Description

Distance Required Number Size (width) of the gutter, in 1/72”

BetweenCols Required Integer ✕2 Identifies the set of columns between which this Distance
applies. See examples. Columns are numbered from left to
right.

6.13.4 Context

VER_GUTTER occurs in SIGNATURE.

PPML Specification Version 1.5 May 31, 2001

Page 94 Copyright  2001 PODi (www.podi.org) www.ppml.org

6.14 The <HOR_FOLD_MARKS> Element

6.14.1 Description

The HOR_FOLD_MARKS element specifies a pair of horizontal fold marks between two specified
rows of a Signature – an Occurrence of a Reusable Object that will print outside the left and right
edges of the Signature.

If fold marks are defined between two cells, the trim marks on the two corners of each cell closest to
the fold marks are suppressed. Fold marks are also suppressed if any part of its bounding box falls
closer than MarkDist from the trim box of a neighboring cell.

The name of the Reusable Object Occurrence is resolved immediately when this element is
encountered. The OCCURRENCE_REF may only refer to a reusable object with a scope at least as
high as the scope of the IMPOSITION element enclosing this mark. It is an error to refer to a mark
which is in scope, but which has a scope lower than that of the enclosing IMPOSITION element.

6.14.2 Model

HOR_FOLD_MARKS (OCCURRENCE_REF)

6.14.3 Attributes

Attribute

Required
/Optional

Type

Description

BetweenRows Required Integer ✕2 Rows between which the fold line exists

MarkDist Optional Number Distance, in 1/72”, between the outermost page of the
signature and the start of the Reusable Object. (Positive
value = away from the signature.)

6.14.4 Context

HOR_FOLD_MARKS occurs in SIGNATURE.

6.14.5 Example

<HOR_FOLD_MARKS BetweenRows="1 2" MarkDist="6">

 <OCCURRENCE_REF Ref=”HDashedLine”/>

</HOR_FOLD_MARKS>

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 95

6.15 The <VER_FOLD_MARKS> Element

6.15.1 Description

The VER_FOLD_MARKS element specifies a pair of vertical fold marks between two specified
columns of a Signature – an Occurrence of a Reusable Object that will print outside the top and
bottom edges of the Signature.

The mark will be centered on the fold line, at a distance specified by the MarkDist attribute.

If fold marks are defined between two cells, the trim marks on the two corners of each cell closest to
the fold marks are suppressed. Fold marks are also suppressed if any part of its bounding box falls
closer than MarkDist from the trim box of a neighboring cell.

The name of the Reusable Object Occurrence is resolved immediately when this element is
encountered. The OCCURRENCE_REF may only refer to a reusable object with a scope at least as
high as the scope of the IMPOSITION element enclosing this mark. It is an error to refer to a mark
which is in scope, but which has a scope lower than that of the enclosing IMPOSITION element.

6.15.2 Model

VER_FOLD_MARKS (OCCURRENCE_REF)

6.15.3 Attributes

Attribute

Required
/Optional

Type

Description

BetweenCols Required Integer ✕2 Columns between which the fold line exists

MarkDist Optional Number Distance, in 1/72”, between the outermost page of the
signature and the start of the Reusable Object.
(Positive value = away from the signature.)

6.15.4 Context

VER_FOLD_MARKS occurs in SIGNATURE.

6.15.5 Example

<VER_FOLD_MARKS BetweenCols="1 2" MarkDist="6">

 <OCCURRENCE_REF Ref=”VFoldMark”/>

</VER_FOLD_MARKS>

PPML Specification Version 1.5 May 31, 2001

Page 96 Copyright  2001 PODi (www.podi.org) www.ppml.org

6.16 The <REPEAT> Element

6.16.1 Description

An imposition template allows printing multiple pages on a signature, from one Instance Document.
In contrast, the REPEAT element allows printing signatures from multiple documents on a single
sheet. It also controls the distribution of different Instance Documents throughout the print run.

Three attributes control the effect of each REPEAT element: Direction, Action, and Count. The
elements can be nested, with different values in each element. When REPEAT elements are nested,
they are executed from innermost to outermost. For instance, the following code could be used in
creating a sheet of five identical columns of eight different business cards (see illustration). (Inner
elements have been omitted for this illustration.)

<REPEAT Direction=”Ver” Action=”Increment” Count=”8”>

 <REPEAT Direction=”Hor” Action=”Duplicate” Count=”5”>

 <SIGNATURE...>.... </SIGNATURE>

 </REPEAT>

</REPEAT>

Printing pre-sorted stacks: If the attribute values are Direction=“Stack”
Action=“Increment”, REPEAT puts the next Signature on the next sheet. That is, the signatures
will repeat through the stack of sheets, producing a stack of pre-sorted documents.

In such applications, a Consumer may wish to print the last sheet first, so it ends up at the bottom of
the stack. To support such applications, the optional attribute Order=”Descending” can be used.

Nested REPEATs using Action=“Increment”: When multiple nested REPEATs have
Action=”Increment”, an additional counter d (document counter) is applied. In every step of a
REPEAT with action=”Increment”, d is incremented by 1, while s remains the overall sheet counter.
For instance, in the following example the inner REPEAT has Direction=”Ver” Count=”3” so the
Consumer will first put three signatures in a column. The outer REPEAT has Direction=”Hor”
Count=”4” so the whole column will be repeated four times, incrementing the counter d
continuously:

2: The second REPEAT does the same
on each row, with a different card:
<REPEAT Direction=”Ver”

Action=”Increment”
Count=”8”>

1: The inner REPEAT prints the first
card in the top row of each column:
<REPEAT Direction=”Hor”

Action=”Duplicate”
Count=”5”>

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 97

 <REPEAT Action=”Increment” Direction=”Hor” Count=”4”>

 <REPEAT Action=”Increment” Direction=”Ver” Count=”3”>

 <SIGNATURE....>

 </REPEAT>

 </REPEAT>

These are the values ofd for the resulting sheet:
 1 4 7 10
 2 5 8 11
 3 6 9 12

If the signature has one cell, with PageOrder=”s”, then one should impose on the first sheet the first
page of document 1, below it the first page of document 2 and so on.

When the counting of documents is incremented in the stack direction the counter s starts over from
1. If different documents start on the same sheet and they have different number of pages, then the
next set of documents starts only after the longest document ends. For example:

<REPEAT Action=”Increment” Direction=”Hor” Count=”2”>
 <SIGNATURE Nrows=”1” Ncols=”1”>
 <CELL Row=”1” Col=”1” PageOrder=”s”/>
 </SIGNATURE>
</REPEAT>

If document 1 has 1 page and document 2 has 2 pages then this is the page distribution:

Page 1: document 1 page 1, document 2 page 1 (S=1)

Page 2: , document 2 page 2 (S=2)

Page 3: document 3 page 1, document 4 page 1 (S=1)

Notice also that when the count of documents imposed reaches the total count in the imposition
template, the consumer keeps imposing the following documents, as if a global imaginary REPEAT
with count “infinity” encompasses all other REPEATs. In other words, let N be the number of
documents that a REPEAT and all its nested REPEATS consume. This is equal to the product of all
Count attributes of the REPEAT (and all its nested ones), that have an attribute
Action=increment. When all the sheets for these N documents are generated, the whole process
starts again for the next N documents.

In the last example the imposition template imposes two documents (one REPEAT element with
count=”2”). In such a case the Consumer imposes the first two documents and then imposes the
next two documents and so on until all documents are imposed.

If there is more than one IMPOSITION element in SHEET_LAYOUT, the counter d increments
independently for each IMPOSITION.

Spacing of Signatures – the attributes Spacing and SpacingMethod: By default,
signatures are repeated with no space between them: the TrimBox of the next Instance Document
touches the TrimBox of the previous one. Optionally, the Spacing attribute can specify a distance
between the documents.

Spacing can have two different meanings,
depending on the value of another
attribute, SpacingMethod, which has
values Gap or Offset. By default,
Spacing specifies the gap between the signatures, as shown in the illustration. If SpacingMethod=
“Offset” then Spacing is the distance from the start of one signature to the start of the next.

PPML Specification Version 1.5 May 31, 2001

Page 98 Copyright  2001 PODi (www.podi.org) www.ppml.org

Multiple multi-page Instance Documents per sheet: Note that REPEAT repeats a
signature, which is defined as “a set of one or more pages from an Instance Document, printed on
a single sheet of paper.” The business card example above shows the trivial case of a one-page
Signature, where each cell equals an entire Instance Document.

It is also possible to repeat a multi-page (multi-cell) Signature on a single sheet. For instance, a
personalized folded card, such as an invitation or a greeting card, could be repeated, placing two
Instance Documents on each sheet using the following code:

<REPEAT Direction="Ver" Count="2" Action="Increment">

 <SIGNATURE Nrows="2" Ncols="1">

 <CELL Row="1" Col="1" PageOrder="4*s-0" Face="Up" Rotate="0"/>

 <CELL Row="1" Col="2" PageOrder="4*s-3" Face="Up" Rotate="0"/>

 <CELL Row="1" Col="1" PageOrder="4*s-2" Face="Dn" Rotate="0"/>

 <CELL Row="1" Col="2" PageOrder="4*s-1" Face="Dn" Rotate="0"/>

 </SIGNATURE>

</REPEAT>

6.16.2 Model

REPEAT (REPEAT | SIGNATURE)

6.16.3 Attributes

Attribute

Required
/Optional

Type

Description

Direction Required Keyword Specifies which direction this REPEAT element is
defining. Allowable values: Ver (vertical), Hor
(horizontal), Stack (from sheet to sheet).

Action Required Keyword What to print in the next location: use the same value of
the signature counter s again, or increment it. Values:
Duplicate or Increment.

Order Optional Keyword Values: Ascending (default) or Descending.

Count Required Integer Total count of repeated instances.

Spacing Optional Number Distance, in 1/72”, between Signatures. Default=0. See
the SpacingMethod attribute for the effect of this value.

SpacingMethod Optional Keyword Values: Gap | Offset. Defines the meaning of the
Spacing value: If Gap, then Spacing is the gap
distance between signatures. If Offset, then Spacing
is the distance from the start of one signature to the start of
the next signature.

6.16.4 Context

The REPEAT element occurs in IMPOSITION and REPEAT.

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 99

Chapter 7:
Production Specifications

7.1 Introductory remarks

Most of the preceding PPML elements concern the appearance of individual pages. It is often useful
to provide additional information that supports the automated production (“manufacturing”) of
finished documents from those pages. Such information has no bearing on the content of individual
pages; rather, it concerns production on a particular machine: how the pages should be rendered
on that machine or instructions to inline finishing equipment.

As much as possible, PPML is intended to be device-independent, presuming that the machine has
the RIPs (processor resources) required by the dataset. Therefore, the PPML philosophy is to keep all
production specifications clearly separate. If it becomes necessary to retarget a job to a different
Consumer, this structure makes it easy to identify and perhaps modify all elements that are not
device-independent.

Still, practical reality in current product implementations (and expected implementations in the
foreseeable future) is that much production information is specific to individual manufacturers: even
the raw feature set varies substantially. Therefore, at present the PPML philosophy is that the
language should only specify production parameters that are true no matter what device will be
used for printing.

PPML Specification Version 1.5 May 31, 2001

Page 100 Copyright  2001 PODi (www.podi.org) www.ppml.org

7.2 The <PRIVATE_INFO> Element

7.2.1 Description

Some applications on some systems need additional “private” information, e.g. device-specific
features that aren’t part of the PPML language. This element allows inclusion of any arbitrary data.

Private Info elements are private; their content is ignored by systems that don’t know the meaning of
the enclosed data.

One expected application for this feature is to include extracts from the widely used PPD (PostScript
Printer Description) file format. Such functionality may be explicitly added to PPML in future
editions; in any event, the PRIVATE_INFO element can safely be used to convey information from
PPDs or any other printer description file format (or any other allowable XML content), and it will be
ignored by any Consumer that has no use for it. Another example of a possible application would
be to provide data regarding a CMS (color management system) profile.

7.2.2 Model

PRIVATE_INFO (#PCDATA)

7.2.3 Attributes

Attribute

Required
/Optional

Type

Description

Creator Required String The creator (person, application, system etc) of this element

Identifier Optional String An arbitrary string identifying what information or feature is
provided by the content of this element.

Encoding Optional String Identifies the encoding, if any, used in the content of this
element

CharacterSet Optional String Identifies the character set used in the content of this
element.

7.2.4 Context

The PRIVATE_INFO element can occur in PPML, JOB, DOCUMENT, and PAGE.

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 101

Chapter 8:
Resources

8.1 The <REQUIRED_RESOURCES> Element

8.1.1 Description

The optional Required Resources element can appear at any level (PPML, Job, Document, Page). It
specifies all the resources required (e.g. a font or a PostScript procedure set) to process every page
and every object at and below the current level (the “enclosed pages”). There is no required use for
this element, but it exists for two purposes:

1. Pre-flight checks: so that a Consumer can ensure that all resources required for a print run
are available before the processing and printing starts.

2. Subsets: To facilitate extraction of self-sufficient subsets of the larger PPML dataset that include
all the resources required to print the subset successfully.

8.1.2 Model

REQUIRED_RESOURCES (FONT*,

EXTERNAL_DATA*,

PROCESSOR*,

SUPPLIED_RESOURCE_REF*)

8.1.3 Context

The REQUIRED_RESOURCES element can occur at any level: JOB, DOCUMENT, PAGE, or the entire
PPML element.

8.1.4 Attributes

None.

8.1.5 Application notes

A PPML Producer can choose the level (or levels) at which it will place the Required Resources
element, based on the functionality desired for the target application.

Consumers should note that there may be an interaction between SUPPLIED_RESOURCE and
REQUIRED_RESOURCE which presents an opportunity for optimization. For instance, the input stream
might name an EXTERNAL_DATA Required Resource that’s previously been supplied. In a simplest
implementation, the Consumer can simply concatenate the external file within the SOURCE element
whenever it’s needed. In contrast, a more sophisticated Consumer may choose to add code to
process the Resource in a way that makes it persistent, and then insert code that loads it later, when
needed.

PPML Specification Version 1.5 May 31, 2001

Page 102 Copyright  2001 PODi (www.podi.org) www.ppml.org

8.2 The Element

8.2.1 Description

The FONT element identifies a font resource required for processing the pages enclosed in the
current level.

8.2.2 Model

FONT EMPTY

8.2.3 Attributes

Attribute

Required
/Optional

Type

Description

FontName Required String Name of the font as referenced by the content of the
SOURCE elements in which it is used.

Format Required String Data format of the font. Value: any format name registered
with the Internet Assigned Numbers Authority (IANA).

8.2.4 Context

FONT occurs in REQUIRED_RESOURCES.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 103

8.3 The <PROCESSOR> Element

8.3.1 Description

The PROCESSOR element names a file format interpreting resource, e.g. a RIP or similar interpreter,
required for processing the pages enclosed in the current level.

8.3.2 Model

PROCESSOR EMPTY

8.3.3 Attributes

Attribute

Required
/Optional

Type

Description

Format Required String Name of the language or file format. Value: any format
name registered with the Internet Assigned Numbers
Authority (IANA).

Revision Optional String Any identifying string that will be useful to a Consumer in
identifying whether its available processor resources are
appropriate for the enclosed data.

8.3.4 Context

PROCESSOR occurs in REQUIRED_RESOURCES.

PPML Specification Version 1.5 May 31, 2001

Page 104 Copyright  2001 PODi (www.podi.org) www.ppml.org

8.4 The <SUPPLIED_RESOURCES> Element

8.4.1 Description

SUPPLIED_RESOURCES is an umbrella element containing one or more child SUPPLIED_RESOURCE
elements.

8.4.2 Model

SUPPLIED_RESOURCES (SUPPLIED_RESOURCE+)

8.4.3 Attributes

None.

8.4.4 Context

SUPPLIED_RESOURCES occurs within PPML, DOCUMENT, JOB, and PAGE.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 105

8.5 The <SUPPLIED_RESOURCE> Element

8.5.1 Description

The Supplied Resource is a definition of a reusable resource such as a font, PostScript ProcSet, and
other reusable resources for later use. To be used, the Supplied Resource must be referenced by a
SUPPLIED_RESOURCE_REF in a REQUIRED_RESOURCES element.

Resources are independent of each other. They may be processed in any order, but they must
appear before they are referenced.

8.5.2 Model

SUPPLIED_RESOURCE EMPTY

8.5.3 Attributes

Attribute

Required
/Optional

Type

Description

Name Required String An identifying name for this resource for use in
SUPPLIED_RESOURCE_REF.

ResourceName Required String Name of the resource as referenced by the content of the
SOURCE elements in which it is used.

Src Required URI Location of the resource file

Format Required String Data format of the resource. Value: any format name registered
with the Internet Assigned Numbers Authority (IANA).

Type Required Keyword The resource type: Font | ProcSet. Other types may be
defined in the future. A ProcSet is a PostScript ProcSet as defined
in the PostScript Language Reference Manual.

SubType Optional String Optional resource subtype, e.g. (Type1, TrueType etc.)

Scope Optional String Specifies how long the Consumer must ensure that the resource
will be needed: to the end of the current PPML, JOB,
DOCUMENT, or PAGE element.

8.5.4 Context

The SUPPLIED_RESOURCE element can occur in SUPPLIED_RESOURCES.

PPML Specification Version 1.5 May 31, 2001

Page 106 Copyright  2001 PODi (www.podi.org) www.ppml.org

8.6 The <SUPPLIED_RESOURCE_REF> Element

8.6.1 Description

This element embodies a reference to a previously named SUPPLIED_RESOURCE element. This
permits a SUPPLIED_RESOURCE element to be declared once, and referenced in multiple
REQUIRED_RESOURCES elements.

8.6.2 Model

SUPPLIED_RESOURCE_REF EMPTY

8.6.3 Attributes

Attribute

Required
/Optional

Type

Description

Name Required String Supplies the name of a previously encountered and named
SUPPLIED_RESOURCE element.

8.6.4 Context

The SUPPLIED_RESOURCE_REF element can occur in REQUIRED_RESOURCES.

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 107

Chapter 9:
Future Capabilities

The following are in addition to future capabilities mentioned elsewhere in this specification.

9.1 Transparency / overprinting

In the current version of PPML each MARK defines a raster image that consists of “marked” and
“transparent” pixels. When a MARK overlaps a MARK that was previously placed on the page, its
marked pixels completely obscure the previous MARK’s pixels, and the transparent pixels leave the
previous MARK’s pixels unaffected. This specification only applies to the interaction of MARKs: it
does not preclude the content data format used for a particular MARK from using transparency to
specify the color of the marked pixels in the MARK’s raster image.

Later versions of this specification may allow the placement of a MARK to modify rather than
obscure MARKs that were previously placed on the page. Note, however, that since different MARKs
may have been generated by content data in different content data formats using different color
models, the definition of how a “partially transparent” overlying pixel would interact with an
underlying pixel is a complex process.

9.2 Color Management

Future versions of PPML may include direct support for CMS (color management system) profiles. In
the current version, color profiles can be supported via PRIVATE_INFO or EXTERNAL_DATA
elements.

9.3 PPML Consumer Profile

Differences between Consumers (e.g. which data formats they can accept, level of imposition
support, color separations available) may be documented in a standardized Consumer Profile file
format. In the current version of PPML, such information can optionally be conveyed in
PRIVATE_INFO elements.

PPML Specification Version 1.5 May 31, 2001

Page 108 Copyright  2001 PODi (www.podi.org) www.ppml.org

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 109

Chapter 10:
Conformance Subsets

10.1 Introduction

The PPML language allows a practically limitless range of data formats. This gives the language
great flexibility for present and future applications, but also creates the possibility of valid PPML
datasets that no machine could consume. To enable greater predictability, PODi may define
subsets designed to meet the needs of various markets and applications.

Conformance to a particular subset can be declared using the CONFORMANCE element (see section
4.7). Each subset described below has one or more identifying strings for use in the Subset and
Level attributes of CONFORMANCE.

10.2 Graphic Arts subset

This subset is intended to meet the needs of typical graphic arts workflows.

 Subset string: GA

 Level string: 1 or 2

10.2.1 Levels

The relationships between PPML Producers and PPML Consumers can be categorized as informal,
semi-formal, and formal. The PPML Graphic Arts Conformance Subset is intended for informal and
semi-formal relationships. It is not intended for formal relationships. If a conforming dataset
specifies ResourcesIncluded=Yes, then the dataset is suitable for informal blind-exchange.
If a conforming dataset specifies ResourcesIncluded=No, then the dataset is suitable for semi-
formal partial-blind-exchange.

Level 1: informal relationship, “blind exchange”

An informal relationship allows “blind exchange” between Producer and Consumer. All data
needed for the job is transmitted with the job itself. There is no reliance on any previous
exchanges between Producer and Consumer.

The Producer must ensure the job conforms to the Subset and that all resources are included in the
job itself. The Consumer must ensure it can correctly process any PPML that conforms to this subset.

Level 2: semi-formal, “partial blind exchange”

A semi-formal relationship allows partial-blind-exchange between Producer and Consumer. Some
of the data needed for this job may have been sent in a previous exchange and has been kept by
the Consumer for use by future jobs.

PPML Specification Version 1.5 May 31, 2001

Page 110 Copyright  2001 PODi (www.podi.org) www.ppml.org

The Producer must ensure that the PPML data conforms to this Conformance Subset, and that all
needed data is either in the job stream or already present at the Consumer. The Consumer must
ensure it can correctly process any Conformance Subset PPML.

Open exchange (formal relationship)

A formal relationship allows open exchange of data between Producer and Consumer. The
Producer knows which Consumer it is sending data to and forms the data according to what the
Consumer needs. For these relationships, no Conformance Subset is needed. However, PPML
datasets prepared for one Consumer may not print correctly if sent to another Consumer. It is up to
the Producer to guarantee that the PPML can be processed by the Consumer.

10.2.2 Overview of PPML Changes

PPML that conforms to the Graphic Arts Subset is restricted as follows:

The SOURCE element

The SOURCE element Format attribute may only have one of these values:

application/postscript
application/pdf
image/tiff
image/jpeg.

Further restrictions on these data formats (e.g. revision levels) are explained in detail below. A
conforming PPML Producer may produce any or all of these formats, and therefore conforming
PPML Consumers must support all of them.

Digital Print Ticket (job ticketing)

The to-be-defined PPML digital print ticket format shall specify all Production Instructions.
PRINT_LAYOUT elements contained within PPML and JOB elements are allowed, but will be
overridden by a PRINT_LAYOUT element within the PPML job ticket.

PRIVATE_INFO

PRIVATE_INFO cannot alter the content or layout of objects on the page.

The ResourcesIncluded attribute

The PPML element’s attribute ResourcesIncluded promises a Consumer that all referenced
content data, fonts, and other resources are supplied with the dataset. Note that this attribute can
have the value Yes or No. Either value is valid for compliance with the Graphic Arts subset. A
value of Yes means the dataset is suitable for the "blind exchange" business relationship model.

10.2.3 Details of ResourcesIncluded

A PPML dataset that specifies ResourcesIncluded=Yes must conform to these rules:

1. All content data is transmitted with the dataset. For example, if the dataset is carried in MIME,
all content data is also included in that MIME stream. All references to external data

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 111

(EXTERNAL_DATA, EXTERNAL_DATA_ARRAY, SUPPLIED_RESOURCE) will refer only to data
transmitted with the job.

2. All REQUIRED_RESOURCES elements (if present) must include only
SUPPLIED_RESOURCE_REF and PROCESSOR elements. No FONT elements are allowed.

3. No element shall specify Scope=Global. This guarantees that the data carried with the dataset
will be used and not some global data from a previous dataset.

A PPML dataset that specifies ResourcesIncluded=Yes but does not conform to the above rules
is an invalid PPML dataset.

10.2.4 Content Format Details

Color Spaces

Some color data does not specify a calibrated color space to determine its color characteristics:
TIFF, JPEG, and PostScript/PDF in color spaces DeviceCMYK and DeviceRGB. All such color data
shall be assumed to be calibrated to the SWOP standard (Specifications Web Offset Publications,
available at http://www.swop.org) for four-component data, or to the sRGB standard (IEC61966-
2.1, available at http://www.srgb.com) for three-component data.

PostScript

SOURCE elements with Format=application/postscript conform to the Graphic Arts subset
if they refer to content data that obey these restrictions:

• Content data adheres to the PostScript Language Reference Manual, Third Edition (PLRM).
For example, language extensions for particular printers are not allowed.

• Content data do not rely on the execution of illegal operators as defined in "Encapsulated
PostScript File Format Specification Version 3.0", Adobe Technical Note #5002 and as
amended by Appendix G, "Operator Usage Guidelines" of the PLRM. A PPML Consumer
is free to redefine these illegal operators to consume their operands and do nothing else.

• Content data do not use any restricted operators as defined in "Encapsulated PostScript
File Format Specification Version 3.0", except as allowed in Appendix G, "Operator
Usage Guidelines" of the PLRM. A PPML Consumer is free to redefine these restricted
operators to perform only permitted uses.

• Any external resources, such as fonts, that are not included directly in the content data are
specified in the REQUIRED_RESOURCES element that pertains to this SOURCE element.

• OPI comments for image replacement must be ignored. Any image replacement, such as
that specified by OPI comments, has already been accomplished before the PPML
Consumer receives the PPML dataset.

PDF

SOURCE elements with Format=application/pdf conform to the Graphic Arts subset if they
refer to content data that obey these restrictions:

• Content data contain only PDF operators as specified in the Portable Document Format
Reference Manual, Version 1.3.

http://www.swop.org/
http://www.srgb.com/

PPML Specification Version 1.5 May 31, 2001

Page 112 Copyright  2001 PODi (www.podi.org) www.ppml.org

• Any external resources, such as fonts, that are not included directly in the content data are
specified in the REQUIRED_RESOURCES element that pertains to this SOURCE
element.

• No image object will contain an OPI Dictionary.

TIFF

SOURCE elements with Format=image/tiff conform to the Graphic Arts subset if they refer to
content data that obey these restrictions:

• Content data conform to TIFF Revision 6.010, except:

• Content data do not specify Compression=6, which is ill-defined and can't guarantee
successful parsing of JPEG data, and

• Content data can specify Compression=7, which is well-defined JPEG, 11 and widely used.

Note that Compression=5 (LZW compression) is supported, but requires a license from Unisys.
Conforming PPML Producers and Consumers are required to obtain such a license themselves or
use products from companies that already have a license.

JPEG

SOURCE elements with Format=image/jpeg conform to the Graphic Arts subset if they refer to
content data that obey these restrictions:

• Content data conform to Huffman-encoded Lossy JPEG (any of these Start Frame Markers:
SF0, SF1, SF2, SF5, SF6).

• Resolution is deduced from the Dimensions attribute of the element. Only one JPEG image
file is allowed per SOURCE element, so that Dimensions will be correct.

10 Available at http://partners.adobe.com/asn/developer/PDFS/TN/TIFF6.pdf
11 ftp://ftp.sgi.com/graphics/tiff/TTN2.draft.txt

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 113

Appendix 1:
Acknowledgements

PPML Working Group participants

The PPML specification would not have been possible without the substantial efforts of the following
companies and their designated participants. In alphabetical order, they are:

Adobe Systems: John Green
Agfa: Roger Baeten and Marcus Delhoune
Barco: Dirk De Bosschere
EFI: Margaret Motamed
HP: Bob Taylor
IBM: D. R. Palmer
Indigo: Sigal Krumer and Ouri Poupko
NexPress: David Blaszyk, Tim Donahue, Wayne Minns
Pageflex: Peter Davis
Scitex: Jacob Aizikowitz, Israel Roth, Reuven Sherwin
Xeikon: Anthony Porter
Xerox: Steve Strasen

Prior work

While PPML as a standardized data format is new, the technology of variable data printing (VDP)
is not.

PPML concepts were largely contributed by skilled developers of established VDP products from
several members of PODi, including:

• Agfa variable data machines and Personalizer X software

• Barco’s Book Ticket Format (BTF) and Imposition Templates for PrintStreamer

• Indigo™ Yours Truly™ Personalization® architecture, SNAP® personalization software
and software applications

• Pageflex’s MPower variable data composition software, based on the NuDoc composition
engine

• Scitex’s VI Digital Front Ends, Darwin software, and VPS™ language. Scitex is a co-founder of
PODi. Before PPML, VPS was the format that was most widely supported by third-party
applications.

• Xeikon’s “Private-I” software

PPML Specification Version 1.5 May 31, 2001

Page 114 Copyright  2001 PODi (www.podi.org) www.ppml.org

Origins of PPML

PPML 1.0 grew out a combined proposal approved in July 1999 by the PPML Working Group. This
proposal was a merger of proposals from Scitex, Barco and Pageflex: Scitex, by way of its VPS
language, contributed the foundation for the basic object model, object-level granularity, and job
structure of PPML; Barco contributed the foundation for the production-centric parts of the
specification, including major work on imposition; PageFlex contributed the original proposal for
an XML-based language called PPML. NexPress contributed substantial work from its proposed
vPDF specification, and Xerox presented additional information at the July conference based on its
substantial experience with its VIPP PostScript-based variable data software.

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 115

Appendix 2:
Introduction to XML

The PPML data format is based on the XML (eXtensible Mark-up Language) syntax. This is
analogous to saying that XML is the programming language in which the PPML application is
written. To understand PPML, therefore, it’s helpful to have some basic knowledge of how XML
works.

Elements: In XML, data can be grouped into tagged elements, like this:

<TAG>This sentence is data of type TAG.</TAG>

Here, <TAG> is the start tag, and </TAG> is the end tag. The end tag uses the same tag name as
the start tag, but the name is preceded by a “/”. Whatever lies between the start and end tags is
considered to be of type TAG.

Nesting: Elements can be, and usually are, nested:

<TAG1>This is TAG1 text.

 <TAG2>And this is TAG2 text.</TAG2>

</TAG1>.

Note that the end tags are in the reverse order from the start tags, so that TAG2 lies entirely inside
TAG1. This means the elements are properly nested. The following would NOT be syntactically
valid because the outer tag (TAG1) is closed off while the inner tag (TAG2) is still left open:

<TAG1>This is TAG1 text.

 <TAG2>And this is TAG2 text.

</TAG1>

</TAG2>.

Elements with no content: In some cases, a tagged element will have no content between the
opening and closing tags. This can be abbreviated with a single tag that has the “/” character at
the end. In other words, <TAG/> is equivalent to <TAG></TAG>.

Attributes: Elements can specify attributes, which are properties of the particular instance of the
element. For example, element NOTE_TEXT could be defined to have the property that the color is
normally red, but I may override this in a specific instance by specifying:

<NOTE_TEXT Color="blue">This text will be blue.</NOTE_TEXT>

In this example, Color is an attribute of the element NOTE_TEXT.

Comments: Finally, comments (information which is not processed by software) can be placed in
the XML file for users who may wish to look directly at the file. Such comments are embedded
between
<!-- and --> delimiters, for instance:

<!-- This is a comment. -->

White space (returns, tabs, and spaces) are allowed within a comment.

PPML Specification Version 1.5 May 31, 2001

Page 116 Copyright  2001 PODi (www.podi.org) www.ppml.org

The DTD: An XML application, such as PPML, specifies exactly which tags are defined, which
elements can (or must) exist within other elements, and what attributes and values can be specified
for each element, via a file called the Document Type Definition (DTD).

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 117

Appendix 3:
Strings to use for
the Format attribute of SOURCE
The following are examples of the strings approved by IANA (the Internet Assigned Numbers
Authority) that are to be used in the value of the Format attribute in the SOURCE element. These
strings were developed for use in identifying the media type in a MIME stream; PPML is adopting
them by reference because they are an existing standard that is well suited to PPML needs.

Most of these strings are from
http://www.isi.edu/in-notes/iana/assignments/media-types/media-types.

Format IANA identifier
PostScript application/postscript RFC2045, RFC2046

Encapsulated PostScript (EPS) application/postscript

PDF application/pdf

PCL application/vnd.hp-PCL

PCL XL application/vnd.hp-PCLXL

AFP application/vnd.ibm.modcap

TIFF image/tiff RFC2302

JPEG image/jpeg RFC2045, RFC2046

GIF image/gif RFC2045, RFC2046

SVG (scaleable vector graphics) image/svg-xml

http://www.isi.edu/in-notes/iana/assignments/media-types/media-types

PPML Specification Version 1.5 May 31, 2001

Page 118 Copyright  2001 PODi (www.podi.org) www.ppml.org

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 119

Appendix 4: Change History

Version 1.0, March 15, 2000
Initial release.

Version 1.01, May 18, 2000:
• Inside front cover: modify text and email address related to reader participation.

• 1.2 Organization of this Document: add “and Marks”

• 2.1.4 DTD: Add reference to the official online version of the PPML DTD.

• 4.4.3 (attributes of DOCUMENT and PAGE): reposition Label attribute in the table. (This
does not affect functionality.)

• 5.3.3 Attributes of MARK,
new 5.5.3 Implementation Note: New definition of the Position attribute.

• 5.7.1 Description of OBJECT element: add a second paragraph, clarifying intent related
to the change in 5.5.3 above.

• 5.7.3 Attributes of OBJECT: see 5.3.3 above.

• 5.8.2 Model of SOURCE: add EXTERNAL_DATA_ARRAY, consistent with contexts listed in
5.10.3.

• Appendix 3: add SVG support.

• Reference card: update per the above; document the list of allowed attribute values where
appropriate, and show which choice is the default.

Version 1.02, December 14, 2000:

New features and substantial additions

• Add support for multi-page source files:

• Created two new elements, SEGMENT_ARRAY (section 5.17) and SEGMENT_REF (section
5.18);

• Added SEGMENT_REF to the model for MARK, and added SEGMENT_ARRAY to the model for
PPML, Job, Document, and Page.

• Illustrations of how PPML content objects are created and placed on a page:

• Added new section 5.19 Definition of PPML Extent Boxes

• Added section 5.20 Notes on Transforming, Clipping and Positioning

• Imaging model re transparency & overprint: Modify the following sections regarding
the interaction of marks on a page:
5.2 A Page contains Marks

PPML Specification Version 1.5 May 31, 2001

Page 120 Copyright  2001 PODi (www.podi.org) www.ppml.org

5.3.1 The MARK Element – Description
9.1 Transparency / overprinting

Additional changes and clarifications

• 2.1.4 DTD: Add PUBLIC identifier; change statement regarding DTDs stored on the Web.

• 2.2 Non-XML Data: remove sentence about a possible separate specification regarding
transport issues.

• 5.8.1 SOURCE: Add paragraph regarding non-content data, such as binary previews on
Windows EPS files.

• 5.10.3 EXTERNAL_DATA_ARRAY: Clarify minimum value of Index attribute.

• 6.6.3 IMPOSITION Position attribute: Declare that the imposition structure does not
include any trim or fold marks, so the marks do not affect position on the sheet,

• 6.8.1 SIGNATURE description: Explain CELL positioning and rotation

• 6.9 The CELL Element: Expand description (6.9.1), add rotation example (6.9.7), add
“PageOrder <1” case at end of 6.9.5.

• 6.10 The HOR_TRIM_MARKS Element: Add illustration of position of trim marks; clarify
wording of mark suppression in the “touching pages” case.

• Scope of OCCURRENCE_REF in sheet marks: State in 6.10.1, 6.11.1, 6.14.1, 6.15.1
that the scope of a sheet mark’s Occurrence Ref must be at least as high as the enclosing
IMPOSITION.

• 6.14.1, HOR_FOLD_MARKS: clarify suppression of trim marks near fold marks.

• 8.2.3, Attributes of FONT: Add Format attribute. Also, change the Name attribute to
FontName and add a descriptive note about its intent. (“Name” in other PPML elements is merely
an arbitrary identifying string; in the FONT element, it denotes the actual name of the font, e.g.
Helvetica-BoldOblique. Also, add Format attribute.

• 8.5 SUPPLIED_RESOURCE:

• 8.5.1 Description: stipulate that the resource must be referenced to be used; stipulate that
resources can be processed in any order.

• 8.5.3 Attributes: add required ResourceName attribute; clarify that the Name attribute is
for use in SUPPLIED_RESOURCE_REF; Type attribute has only two possible values (Font or
ProcSet); add definition of ProcSet.

May 31, 2001 PPML Specification Version 1.5

www.ppml.org Copyright  2001 PODi (www.podi.org) Page 121

Version 1.5, May 31, 2001:

New features and substantial additions

• Conformance subsets

• Add new Chapter 10, Conformance Subsets, particularly Section 10.2, Graphic Arts subset,
with full definition of file formats and their constraints.

• Add new CONFORMANCE element (Section 4.7) and ResourcesIncluded attribute on PPML.

• Page Dimension information: For non-imposing Consumers (see below), add new

PAGE_DESIGN element (section 4.6); add corresponding text in PAGE_LAYOUT; deprecate the
use of the Dimensions attribute on DOCUMENT and PAGE.

Additional changes and clarifications

• Imposing and non-imposing Consumers: clarify the term “imposition” as used in this
specification (section 6.1.1) and update the boxed note in Section 6.1 regarding what features
a Consumer may or may not support; add SheetLayoutIncluded attribute on PPML.

• Enhanced REPEAT functionality for imposing Consumers: in the PageOrder attribute of
CELL, change the counter s to refer to sheets (not signatures) and add document counter d.

	Introduction
	Purpose of the PPML language
	Organization of this document
	Notation used in this document
	Additional resources
	Feedback

	The PPML Data Format
	XML
	Non-XML data

	Terminology and Basic Concepts
	Producers and Consumers
	Anatomy of a Personalized Print project
	Additional terminology
	Detection of Errors

	The Structure of PPML Data
	Hierarchy, Scope, and Inheritance
	The <PPML> Element
	The <JOB> Element
	The <DOCUMENT> Element
	The <PAGE> Element
	The <PAGE_DESIGN> Element
	
	The “Trim Box”
	The “Bleed Box”

	The <CONFORMANCE> Element

	The PPML page
	Coordinate System
	A Page contains Marks
	The <MARK> Element
	The <VIEW> Element
	The <TRANSFORM> Element
	The <CLIP_RECT> Element
	The <OBJECT> Element
	The <SOURCE> Element
	The <EXTERNAL_DATA> Element
	The <EXTERNAL_DATA_ARRAY> Element
	The <INTERNAL_DATA> Element
	The <REUSABLE_OBJECT> Element
	The <OCCURRENCE_LIST> Element
	The <OCCURRENCE> Element
	The <OCCURRENCE_REF> Element
	Notes on REUSABLE_OBJECTs, OCCURRENCES, Scope, and€Environment
	The <SEGMENT_ARRAY> element
	The <SEGMENT_REF> element
	Definition of PPML Extent Boxes
	Notes on Transforming, Clipping and Positioning

	Print Layout –�Page Layout and Imposition
	Introduction
	The <PRINT_LAYOUT> Element
	The <PAGE_LAYOUT> Element
	
	The “Trim Box”
	The “Bleed Box”
	The “Bounding Box”

	The <SHEET_LAYOUT> Element
	The <SHEET_MARK> Element
	The <IMPOSITION> Element
	The <IMPOSITION_REF> Element
	The <SIGNATURE> Element
	The <CELL> Element
	The <HOR_TRIM_MARKS> Element
	The <VER_TRIM_MARKS> Element
	The <HOR_GUTTER> Element
	The <VER_GUTTER> Element
	The <HOR_FOLD_MARKS> Element
	The <VER_FOLD_MARKS> Element
	The <REPEAT> Element

	Production Specifications
	Introductory remarks
	The <PRIVATE_INFO> Element

	Resources
	The <REQUIRED_RESOURCES> Element
	The Element
	The <PROCESSOR> Element
	The <SUPPLIED_RESOURCES> Element
	The <SUPPLIED_RESOURCE> Element
	The <SUPPLIED_RESOURCE_REF> Element

	Future Capabilities
	Transparency / overprinting
	Color Management
	PPML Consumer Profile

	Conformance Subsets
	Introduction
	Graphic Arts subset

	Appendix 1:�Acknowledgements
	PPML Working Group participants
	Prior work
	Origins of PPML

	Appendix 2:�Introduction to XML
	A
	Appendix 3:�Strings to use for �the Format attribute of SOURCE
	A
	Appendix 4: Change History

