PERSONALIZED PRINT

PPML Templates:
1' Methods and
e Workflows

Creating print-ready PPML document streams
automatically and efficiently, directly from raw data

Functional Specification

PPML Templating Specification

Version 1.0 — December 12, 2002
The PPML Working Group

© 2002 PODi hitp://www.podi.org

the Digital Printing initiative

http://www.podi.org/

PPML
The Personalized Print Markup Language

http: //www.podi.org

Feedback and Developer Participation

PODi welcomes feedback on this specification, and offers the following services to support
widespread adoption of the specification:

e Specification Updates

The PPML specification, and related specifications, are distributed free of charge. If you are a
developer who will be implementing the PPML standard, you should subscribe to the free PPML
updates and tech note service.

Additional PPML features are already planned, and some aspects of the specification are likely
to be refined as development proceeds. The spec document itself will be updated, and
technical notes will be published containing clarifications, implementation notes, and so on.

o Developer Support web site

If you are a software or hardware developer interested in supporting PPML, you can register to
participate in the PPML Developers discussion group. At present, there is no charge for this
service.

To participate in the PPML initiative in any of the above ways, send an email to
ppmlinfo@podi.org.

PODi
The Digital Printing Initiative

Web: http://www.podi.org

http://www.podi.org/
mailto:ppmlinfo@podi.org
http://www.podi.org/

Table of Contents

Chapter 1: Introduction 1
T PUIPOSE ettt 1
1.2 Prerequisite readingooiiiiiiiiiii e 1
1.3 PPML as part of a larger workflow...........ooooiiii 1
1.4 Scope of this specification.............ociiiiiiiiiii e 3
1.5 Notation used in this doCUMENt........cc.uiiiiiiiiii e 3
1.6 DFINITIONS. ...t 4
1.7 ReqUirements. ... 5
Chapter 2: Applications of PPML Templating....... SRR 4
2.7 INHTOAUCHION ..o 7
2.2 Benefits of templatingooiiiii e 7
2.3 How templating differs from conventional workflows..............ccooiiiiiiiiii, 7
24 EXAMPLES ...t 10
Chapter 3: XML, Scripting, and XSLT.......... 13
BT INIOAUCTION ..t 13
3.2 Scripting technologies for PPML Templates............cooiiiiiiiiiiiiiiicicecee e 13
L3 XML 13
B XSLT - 13
3.5 Format of an XSL template file...........ooooiiiiiiiii 14
3.6 Literal Result Element as Stylesheet............oooooiiiiii 15
3.7 General sequence of events in XSL.........oooiiiiiiiiiii 15

Chapter 4: Structure of a PPML Templating Projectccceeueeccesseeecccsssecccsssseccsssseee 17

AT OVBIVIEW. ..ot 17
4.2 Element content: Internal vs. External Data............cooooeiiiiiiiiiiii 18
4.3 The <PPMLT> EI@MENt.......uiiiiiiiiiiiiiiiiiieieeee s 19
4.4 The <TEMPLATES EI@MENToiiiiiiiiiiee e 20
4.5 The <TEMPLATE_REF> Element.....ccovmmeieeee e, 22
4.6 The <DATAS EIEMENtoviiiiiiiiiiiiieieie e 23
4.7 The <DATA_REF> ElemMent....cooouniiii e, 24
4.8 The <EXTERNAL_DATAS EleMentooonniiii e, 25
4.9 The <INTERNAL DATAS Elementouniiie e, 26
4.10 The <DATA_STRUCTURE> Elementouuiiiiiiiiiiiiiiiiiee e 27
4.11 The <DATA_MAPPER> €lementooumniiiei e, 28
4.12 The <DATA_MAPPER_REF> El@Mentccoovmniiiieee e, 30
4.13 The <INPUT_DATA_STRUCTURE> Element............ccoouiiiiiiiieiiiiiiiiieeee e 31

www.podi.org Copyright © 2002 PODi Page i

PPML Templating Specification Version 1.0 — December 12, 2002

4.14 The <OUTPUT_DATA_STRUCTURE> Element...........cccoovuviiiiiiieeeiiiiiiiiiieeeeeeeei 32
Chapter 5: Data 33
ST INTOAUCHION ... 33
5.2 The <RECORDS> €I8MENTeiiiiiiiiiiiiiie e 35
5.3 The <R> @leMENt......iiiiiiiiii e 36
5.4 The <F> @lementoooiiiiiiiii e 37
5.5 Very long data SHEAMSc....iiiiiiiii e 38
Appendix A: Sample Applicationccccccceseecccssecccseecsssecscsseccsssessssssssssesssssssssssssss 41
AT INOAUCTION L 41
A.2 Example 1: PPML Templating code, including Reusable Obiject definitions,
complete PPML Template and Data Mapper, and data records............ccccvveiieeininnn... 41
A.3 The same dataset, if the Reusable Obiject occurrences were defined and
downloaded earlier............oouiiiiiiiiiiii 49
A.4 Leanest form: Template, Reusable Content, and Data Mapper have all been
downloaded in AdVANCEuviiiiiiiiiii e 53
A5 EXAMPIE TESUIES ..o 55

Page ii Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

Chapter 1:
Intfroduction

1.1 Purpose

The purpose of this specification is to enable PPML workflows that have higher value, by
automating the generation of certain document streams directly from raw data, and to encourage
growth of high-value workflows by defining an industry standard way of doing it.

The motivation for PPML templating is to enable very long runs of the most valuable type of digital
printing - personalized content — without the substantial overhead traditionally required to generate
and transmit large amounts of repetitive data. As shown by the examples in the Appendix, when
properly applied PPML templating can reduce the amount of data required for such a print run by
two or three orders of magnitude.

Not all PPML applications are suited to templating. PPML is capable of a very wide range of digital
print applications; templating is appropriate for those where parts of the PPML stream can be
replaced with variable content as described in this document.

1.2 Prerequisite reading

This document presumes that the reader is familiar with the basic concepts of PPML, the
Personalized Print Markup Language. Readers who don’t know PPML can use this document to
learn the basic idea of templating. But to create actual templated projects, it's necessary to fully
understand PPML. The PPML specification is freely available at http://www.PODi.org.

1.3 PPML as part of a larger workflow

1.3.1 Introduction

PPML is the Personalized Print Markup Language, an XML-based metalanguage for digital print
applications. Developed by the members of POD;, the Digital Print initiative, PPML was introduced
to the market in February 2000 and has received statements of support from almost all vendors of
digital print equipment and related application software. For more information see
http://www.podi.org.

A maijor strength of PPML is its XML syntax. This means the entire range of XML data processing
tools can be used to generate, analyze, and process PPML data. PPML templating, as described in
this document, takes advantage of this.

www.podi.org Copyright © 2002 PODi Page 1

http://www.podi.org/
http://www.podi.org/

PPML Templating Specification Version 1.0 — December 12, 2002

1.3.2 The PPML Architecture

PPML provides an open, XML-based architecture for digital print projects. It was first introduced to
the market at the worldwide “drupa” exhibition in Dusseldorf in May, 2000, and has become the
first widely-adopted print stream based entirely on an open standard.

Design PPML can be generated by any workflow, automated

» or operator-controlled. Its natural affinity for data-driven
) applications means that the workflow concept shown
A M=, here is common for PPML applications:

Concept Q

Data Records
- E e The project concept is converted fo a page design
template by an operator at a workstation. This may

be done using graphical tools or by creating

logical expressions in a templating language.

@ :::'T:;ou, e To create a print run, data records and digital
—_— stream assets (such as photos) are blended using the
\\ with template. The result is a stream of fully marked-
O job ticket, p : Yy markead-up
ready PPML documents.
H $ to print

£ and finish e The PPML is fed to a digital print system, which
processes the pages, prints the documents, and
(in suitably equipped systems) feeds them to
automated finishing equipment.

Finishing

The PPML specification is formatneutral, allowing
content data to be supplied in any format that a machine supports. As such, it is not limited to the
graphic arts or any other application segment, and its design can be extended in response to new
opportunities and applications that are recognized by member companies and PODi management.

Since version 1.0, PPML has been extended beyond being a content stream. Today PPML provides
a complete workflow architecture:

e Device-independent document content. Documents can be encoded into PPML
without knowledge of the specific device that will print them.

e Open to all content formats. PPML does not specify content format; it provides
metadata about document structure and layout. Thus, it is immediately adaptable to any
new application that may arise that uses a different content format from those previously
associated with digital print. Among other things, this means any new PPML-based print
system can easily be driven by all PPML-producing software, even if the new system is in a
market that's not normally associated with digital print.

o Device-independent job ticketing. As defined in this document, common processing
parameters such as media selection, RIPping parameters, and finishing instructions can be
inserted into the PPML stream without knowledge of the specific device that will print them.
The open PPML ticketing architecture allows this to be done using the JDF standard or other
ticket formats.

e A design for packaging content and job ticket for reliable transport. An
appendix to the PPML specification defines VDP rules for creating a PPML print project (job

Page 2 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

content, layout, and job ticket) on one system and transporting it to another, where it can
be unpacked and printed reliably, even in cross-platform applications.

Because the entire PPML architecture is XML-based, all of the content, structure, and job ticket data

in a PPML project can be generated, manipulated, extracted, subsetted, and processed in any way
that is supported by common XML data tools. In addition, metadata and other types of non-printing
content can be embedded in PPML through the use of the XML namespace mechanisms. This sort of
flexibility and versatility has never before been available in a print stream, illustrating the power of
the PPML design.

Further extension of the PPML architecture is being planned. For more information, contact PODi at
info@podi.org.

1.4 Scope of this specification

This specification describes an extension to PPML for use with scripting technologies such as XSLT. It
does not fully describe XSLT, nor the PPML language itself. Rather, it only describes a method of
accomplishing the transform into PPML.

1.5 Notation used in this document

The following typographic notation is used in this document.
e PPML code excerpts, element names, and attributes: Letter Gothic

e XML code samples are shown as displayed and formatted in the XMLSpy Integrated
Development Environment, for instance:

<|m ====ssosooooooooooooooooooooooooosos >
<!-- Sheet Order and Face Up/Down choices -->
< s s s s s s s s s s s s s e e >

<DigitalPrintingParamsUpdate UpdatelD="SameOQOrderFaceUp" PageDelivery="SameOrderFaceUp"/>
<DigitalPrintingParamsUpdate UpdatelD="SameOrderFaceDown" PageDelivery="SameOrderFaceDown"/>
<DigitalPrintingParamsUpdate UpdatelD="ReverseOrderFaceDown" PageDelivery="ReverseOrderFaceDown"/>
<DigitalPrintingParamsUpdate UpdatelD="ReverseOrderFaceUp" PageDelivery="ReverseOrderFaceUp"/>

(In the body of this specification, no special formatting is applied to JDF element names.)

e The vertical bar character signifies the logical OR operator: |
For instance, “SOURCE | OCCURRENCE_REF” means “SOURCE or OCCURRENCE_REF”.

e Because many PPML element names are common English words, it is often convenient and
accurate to use them conversationally. In this document, when an element name appears in text
not in Courier, but with Initial Capitals, it is specifically referring to the PPML item that bears
that name. When it appears with no capitalization, the word is being used with no special
PPML significance. Example:

The SOURCE element contains one or more component files.
In an OBJECT element, the Source may contain data in any of several formats.
Customers may submit image data that was gathered from a number of different sources.

e In tables of XML attributes, when the data type is Number or Integer, a multiplication sign
indicates a string of numbers separated by spaces. For instance, “Number x4” indicates

www.podi.org Copyright © 2002 PODi Page 3

mailto:info@podi.org

PPML Templating Specification Version 1.0 — December 12, 2002

that the value of the atiribute should be four numbers, such as ”1.234 2.0 3
4.567."

1.6 Definitions

1.6.1 General PPML-related terms

Chapter 3 of the PPML Specification, “Terminology and Basic Concepts,” defines basic terms
regarding PPML document structure and workflow, including:

e PPML Producer (or simply “Producer”) is anything that generates PPML files. This may be a
standalone application, a system-level driver, or anything else.

e PPML Consumer (or simply “Consumer”) is typically a RIP or DFE (digital front end to a
digital printing device), but it may be any other device (or process or system) that reads and
interprets PPML files. See the PPML specification for details on Consumer functionality. In
particular, note that not all Consumers are required to support all features.

Note that a PPML Consumer may also be a PPML Producer. For instance, an application
could read PPML files, interpret their contents, modify the content or structure, and produce new
PPML files.

e Project is all activities involving both the initial setup phase and the subsequent production
runs. A Project is an on-going activity, consisting of multiple Jobs, as opposed to a conventional
print job which is typically produced once and archived.

o Dataset: a PPML element, typically containing one or more Jobs and/or Reusable Object
definitions and related elements required to process them.

e Job is the collection of activities and data to fulfill a single personalized printing work order,
or to prepare the templates, objects, etc. that will later be used in fulfilling production work
orders. In personalized printing, a Job is part of a Project.

NOTE: the PPML language includes a <J0B> element with specific meaning in the
hierarchical structure of PPML. (In PPML 2.1 DOCUMENT_SET is preferred; its meaning is
identical.) In this document, “Job” (capitalized) refers to a PPML <J0B> element; “job”
(lowercase) is informal, with no special meaning relative to PPML. For instance, it's correct to
say “The supervisor asked Pat to run job #482, which contained three PPML Jobs.”

The following terms are also used in this document:

e Imposition is the process of positioning page images on sheets of paper in the printer (or in
a digital printing press), as part of the process of producing finished documents. See Chapter 6
of the PPML Specification.

o Print Originator: the person (or group) for whom a project is being produced - the person
who conceived it and/or decided what they want the finished result (Product) to look like. The
print originator knows what the desired end product is, and may have no knowledge of
process, i.e. how the job will be produced.

e Production Shop: traditionally this term refers to the people who produce a print job,
including their equip ment, software, procedures, and the physical facility itself. This may be a
department of a company, a separate business, or any other entity. In this document, the term

Page 4 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

refers to any entity that performs the work of such a Production Shop. See also “Workflow”
under JDF, below.

RIP: Raster Image Processor — an image processing system that reads data expressed in a PDL
such as PostScript® and converts it to a raster image.

Format Processor: the component of a PPML Consumer that processes objects submitted in
a particular input data format. Examples: a PostScript RIP, or a module that can directly
process an image format such as JPEG or TIFF.

PPML Job Ticket: the data required to produce a set of printed documents, beyond the
document content and layout specified in PPML. The ticket may be external to the PPML dataset
or may be embedded in it, within a PPML TICKET element.

1.6.2 Terms related to Templating

PPML Template Producer (or simply “Template Producer”) is anything that generates a
PPML Template. This may be a human editing a file, a standalone application, or anything
else.

PPML Template Consumer (or simply “Template Consumer”) is anything that reads and
executes PPMLT elements as defined in this document. PPML Template Consumers are PPML
Producers as defined above: they generate PPML code.

It is expected, but not required, that many PPML Consumers will also include built-in
Template Consumer capability. But the Template Consumer may also be a separate production
step, physically distinct from the PPML Consumer. In that case, the Template Consumer would
read the PPMLT elements and produce an ordinary stream of PPML documents, which the PPML
Consumer would process the same as if they didn’t come from templating.

Template: In the context of PPML Templating, the template is a prototype PPML document
which has been modified to enable varying the content using a scripting language such as
XSLT.

Data records: the input data that will be merged with the template to generate the stream of
Instance Documents. Example: the recipient’s name, address, and last product purchased.

Style sheet: In the context of PPML Templating this refers to XSLT style sheets. An XSLT style
sheet contains the transformation instructions that define how Data Records are merged with the
Template. For further information, see the XSLT web site.

1.7 Requirements

The PPML Templating workflow was developed to meet the following requirements:

1.7.1 Must not interfere with existing PPML Consumers in non-template

applications

1.7.2 Support multiple formats for the data list

e XML, both simple and complex

www.podi.org Copyright © 2002 PODi Page 5

PPML Templating Specification Version 1.0 — December 12, 2002

e Comma-separated

e Line data

1.7.3 Compatible with PPML Requirements

PPML Templating shall not restrict or interfere with any existing requirements for the PPML
datastream itself. In particular, it shall follow the PPML requirements for streaming; page
independence, locatability, segmentability; manufacturing information; and variable document
length.

1.7.4 Flexible workflow: Allow template and data to be transmitted in a single
package or separately, which enables reusability of the data and the
template

e Allow sending just a template to the Template Consumer for later use

e Allow sending just the data, to be used with a previously sent template. Note that the same
template can be used repeatedly with different sets of data. This, in fact, is the most
productive way to use variable data, since it amortizes the project’s initial setup cost over a
much longer project lifespan.

Page 6 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

Chapter 2:
Applications of PPML Templating

2.1 Introduction

There is a range of possibilities for how the processing of a print job can be divided among system
components to achieve the benefits of a templating workflow. This chapter presents a framework for
understanding the choices, and the benefits and limitations of what templating can do, so that
workflow designers can make well-informed choices and make optimal use of this technology for
their chosen applications.

In general the amount that can be achieved through templating depends on the amount of
information available to the PPML Template Producer.

For instance, typically a template processor will be very good at performing routine, iterative
operations like inserting data into a pre-defined layout. But features like text composition and
detection of reusable content may not be part of a Template Consumer’s abilities, in which case
they would need to be handled elsewhere in the workflow, before data is transmitted to the
Template Consumer. The PPML Template Producer may or may not have access to information
generated during those processes, such as the height of copy blocks after they’re composed.

2.2 Benefits of templating

PPML Templating involves downloading as much as possible of a personalized print project before
the production run begins. PPML itself offers significant efficiencies in file size, and templating
carries it even further: it takes advantage of the fact that for many print projects, much of the print
stream is repetitive and can be stored in the digital printing press (the PPML Consumer).

In a fully optimized PPML Template workflow, virtually nothing remains to be downloaded at print
time except the data itself. Very litlle data is generated, very litle data is transmitted, and very little
data is processed at the receiving end. As shown by the examples in the appendix, the result can
be substantial savings.

In addition, by directly transforming variable data into a structured print stream (PPML), PPML
Templating enables new workflows independent of constraints of traditional graphic arts system.

2.3 How templating differs from conventional workflows

2.3.1 Anatomy of a variable print project

To understand the impact of templating, it's useful to understand the environment in which it's
designed to be used: the generation of streams of personalized documents.

www.podi.org Copyright © 2002 PODi Page 7

PPML Templating Specification Version 1.0 — December 12, 2002

Templating involves a simple but elegant shift in the location of one portion of the personalized
print workflow: the point where the variable data is merged with the page layout.

As suggested above, personalized documents are typically characterized by having a common and
repetitive structure, with content that varies from individual to individual. There are many different
ways to generate such a stream. Examples range from simple office mail-merge (e.g. form letters) to
highly sophisticated, automated, multi-variable page design systems which can completely vary the
content and even the page layout. Regardless of the details, all these workflows must, at one time
or another, accomplish two primary tasks:

e Job setup, in which the form letter or other document is designed

e Production runs, in which batches of documents are generated and printed.

More specifically, all personalized print workflows must handle the following tasks.
e Job Setup

o Design of the basic document that will be personalized: decisions about content
and layout.

o Decisions about how layout and content will vary, depending on the
variable data. These decisions are often referred to in VDP applications as rules. The
rules are initially created by humans, and they must be encoded in some electronic
form and stored somewhere, to enable automated production.

o Creation of the reusable content objects and downloading to the print system.
e Production runs
o Selecting the variable data for each print run. This is unchanged in Templating.

o Executing the VDP rules for each recipient, to generating the personalized
documents. In Templating, this is done at a different time and place.

o Generating the output code to make the target print system produce the
documents. In PPML templating, this is merged with the previous step.

The follow sections describe typical workflows, with and without templating. Many variations on
these workflows exist in current practice in the industry; the purpose of this discussion is to illustrate
the change that PPML Templating creates.

2.3.2 Conventional Variable Data workflow
e Job setup:
o The page producer application (“Producer”) generates:
* A document template including

e The basic document, including designation of what areas may
change. This is typically stored in the Producer’s native format.

Page 8 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

o

e The rules for creating instance documents, e.g. where to insert
variable text and how to select reusable content elements. Like the
layout, the rules are typically stored in the Producer’s native
format.

* The definitions of PPML Reusable Objects

The Reusable Object definitions are typically transmitted to the Consumer for
processing, proof-printing, approval, and storage.

e Production runs:

o

o

The database generates the variable data records for a print run. For instance, this
may include the name, address, and product interest of each recipient.

The Producer opens the stored template and merges it with the variable data for
each variable data record, using the template’s VDP rules. The result is a stream of
personalized documents.

The Producer uses its PPML driver to convert the personalized documents to a
stream of PPML Instance Documents.

The PPML Instance Documents are transmitted from the Producer to the Consumer.
(This may be done in many ways: by direct cable connection from Producer to
Consumer, or by copying the PPML dataset to a CD, or compressing it info an
archive such as a Zip file, etc.)

The Consumer executes the PPML, resulting in a stream of printed documents.

The next section illustrates the similarities — and differences — in a PPML Templating workflow.

2.3.3 PPML Template workflow

The initial document design is identical and the end result (the printed output) is identical. But
several of the steps are moved to a different point in the workflow.

e Job setup is very similar to the conventional workflow, but the VDP rules are encoded in
a scripting language (e.g. XSLT syntax) in a prototype PPML document. (See next chapter
for more information on XSLT.) The template is downloaded to the PPML Template
Consumer.

Note: “PPML Template Consumer” refers to the part of the workflow that executes the
template. This functionality may be resident inside the PPML Consumer, or it may take
place in a pre-processing step. This has no bearing on the content of this specification.

e Production:

o

The database generates the same variable data records for a print run. The
database records are packaged in the DATA element described in this
specification.

The data is transmitted to the Template Consumer.

www.podi.org

Copyright © 2002 PODi Page 9

PPML Templating Specification Version 1.0 — December 12, 2002

o New: The Template Consumer opens the transmitted PPML Template dataset,
accesses the template (which was sent earlier), and executes the template’s
instructions once for each variable data record. The result is a stream of PPML
Instance Documents. Note:

* Functionally, this merging of template and data is the same as what the
Producer did in the conventional workflow: the VDP rules are applied to
each recipient’s data. But in this workflow, the rules are executed inside
the Template Consumer.

» With this workflow it is not necessary for the Producer to generate an
intfermediate stream of personalized documents in its native format, and
then convert each one to PPML for transmission to the PPML Consumer.
Instead, the PPML is generated directly from the raw data. Also, if the
PPML Template is processed inside the PPML Consumer, it avoids
redundant generation and transmission of the basic document structure.

o At this point the stream of PPML code looks exactly the same as it did in the
conventional workflow described above.

o Thus, the print stream that the PPML Consumer executes is identical in both
workflows, and the resulting output is identical. But the result was produced with a
bare minimum of data handling.

2.4 Examples

Templating can offer significant savings in processing on the originator side, and in data volume in
the overall workflow, but there are some situations in which it may not be appropriate, or in which
more sophisticated work may be necessary to create the transformations, involving more advanced
applications of scripting technologies. This section presents some issues for consideration by
designers of templating workflows.

The principle that “the amount templating can accomplish is a function of how much data is sent” is
illustrated by the following discussion of basic and advanced applications.

2.4.1 Basic applications

In the simple case, PPML Templating is best suited to applications where the layout, page count,
line breaks, and reusable objects are known in advance, so they don’t need to be computed as
part of executing the template. Examples include (but are by no means limited to):

e Simple direct mail pieces, like a “mail merge” application, including variable text or
images.

e Pointof-purchase materials, using PPML reusable content with variable pricing etc.

e Photo album pages, with a static layout and a reusable page border but with references to
different JPEG files on every page.

Page 10 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

2.4.2 Advanced Applications

Advanced workflow developers, with strong knowledge of both PPML and a scripting technology,
can create highly complex and sophisticated documents with this technology. For example:

e Personalized catalogs with variable sized items on different pages

o Customized financial statements that include data-driven graphics and individually selected
offers or advisory content

e Collateral on demand, such as brochures assembled on the fly in response to a user’s
selections on a Web site.

2.4.3 Considerations in the design of templating workflows

As shown by the above examples, a broad range of workflows can be designed using PPML
Templating, by choosing appropriate tools and components based on the type of output desired
and the data available for input to the process. Factors to consider include:

e How will the workflow manipulate and transform the data? (For instance, can a particular
scripting language accomplish the necessary conversions?)

e How will the workflow convert the raw uncomposed data into objects that can be placed on
pages using PPML? (For instance, if text needs to be reflowed into composed paragraphs, how
will that be achieved?)

For assistance in configuring workflows for a particular need, consult your vendor of PPML
Templating systems.

www.podi.org Copyright © 2002 PODi Page 11

PPML Templating Specification Version 1.0 — December 12, 2002

Page 12 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

Chapter 3:
XML, Scripting, and XSLT

3.1 Introduction

This chapter presents an introduction to scripting, particularly XML and XSLT, as they apply to PPML
templating. For detailed information, see the resources listed here.

3.2 Scripting technologies for PPML Templates

This specification defines an architecture that can be used with any sort of scripting technology. As
described below, XSLT is a natural choice, because it is based on XML, as is PPML itself.

However, PPML Templating applications are not limited to XSLT. For instance, another language
that is expected to be well-suited to templating is PERL.

3.3 XML

PPML is an application of XML, the Extensible Mark-up Language. Readers who are not familiar
with XML are directed to these resources:

e XML.ORG (http://www.xml.org) is an industry web portal operated by OASIS, the
Organization for the Advancement of Structured Information Standards.

e OASIS's “The SGML/XML Web Page” (http://www.oasis-open.org/cover/sgml-xml.html)
contains many excellent links to reference information.

e “The XML.commune” (http://www.xml.com) is a collaborative partnership between Seybold
Publications and Songline Studios, an affiliate of O'Reilly & Associates. The site includes Tim
Bray’s excellent annotated version of the XML syntax recommendation.

e Project Cool XML Zone (http://www.projectcool.com/developer/xmlz/) is one of the best sites
for developers, with a fairly good introduction to the basics of XML.

3.4 XSLT

3.4.1 Overview of what XSLT does

XSLT http://www.w3.0org/TR/xslt is one of the two parts of XSL, the Extensible Style Language
http: //www.w3.org/Style/XSL. It transforms one XML file into another one. For instance, it can be
used to transform data conforming to one DTD into a form conforming to another.

The expression language of XSLT is XPath.

www.podi.org Copyright © 2002 PODi Page 13

http://www.xml.org/
http://www.oasis-open.org/cover/sgml-xml.html
http://www.xml.com/
http://www.projectcool.com/developer/xmlz/
http://www.w3.org/TR/xslt
http://www.w3.org/Style/XSL

PPML Templating Specification Version 1.0 — December 12, 2002

3.4.2 High-level description
An XSLT processor does these things:

e It reads a set of instructions encoded in a “style sheet” file [.xsl] and builds a tree
representation in memory. The term “style sheet” is historical. Although XSLT can indeed
be used to insert formatting instructions, it is actually a general purpose XML transformation
language.

e The style sheet includes two general things:

o XSLT instructions, which tell the XSLT processor what data to locate in the input file(s)
and how to manipulate and interpolate that data into the output

o Literal text and non-XSLT XML

e The processor reads the default XML source file and builds a tree representation in
memory. As processing continues, other source XML files may be opened but there is
always one (and only one) available at the outset.

e Instructions in the style sheet tree direct the processor to generate a result tree in memory
consisting of nodes created by copying the literal text and non-XSLT XML plus the result of
executing other XSLT instructions. These other XSLT instructions create what are known as
“result tree fragments”, or RTFs, which are subsequently copied to the end result tree.

e Optionally, the processor serializes the result tree into an output file. The format of the
output file may or may not be XML depending upon the output method specified in the XSLT
script. Typical output methods are “xml”, “html” and “text”. Unless otherwise specified,
the output method will be “xml”.

There are many XSL processors. A commonly used one is Xalan (http://xml.apache.org/xalan-
i/index.html). Saxon (http://saxon.sourceforge.net/) is another very popular XSL processor. A
good list of XSL software tools is at http://xml.coverpages.org/xslSoftware.html

3.5 Format of an XSL template file

An XSL template file, or script, is a well formed XML file consisting of:
e XSLT instructions
e Non-XSLT XML

e Plain text

The non-XSLT XML and plain text constitute what are known as “Literal Result Elements” because
they are copied to the result free unmodifield.

One of the common XSLT instructions is xs1:template. The xsl:template instruction can be
invoked by name or, more commonly, by matching some construct in the input XML file or files.
The match is described using the XPath (http://www.w3.0org/TR/xpath) XML vocabulary.

Each xs1:template itself contains XSLT instructions, non-XSLT XML and plain text. This content
is processed when the template matches a construct in the input XML.

Page 14 Copyright © 2002 PODi www.podi.org

http://xml.apache.org/xalan-j/index.html
http://xml.apache.org/xalan-j/index.html
http://saxon.sourceforge.net/
http://xml.coverpages.org/xslSoftware.html
http://www.w3.org/TR/xpath

Version 1.0 — December 12, 2002 PPML Templating Specification

Another common XSLT instruction is xs1:apply-templates. The xsl:apply-templates
instruction selects a set of nodes from the input XML and looks for the xs1:template instruction
that best matches each, if any. That xs1:template instruction is then executed with the
matching source node as an implicit parameter.

Every source XML file has an implicit, anonymous node at its head. This node, known as the “root
node,” is the parent of the top-level node in the source XML document. This node would be
matched by an XPath match description of “/”.

3.6 Literal Result Element as Stylesheet

A special form of XSLT scripts is known as a “Literal Result Element as Stylesheet”. In this special
form, no xsl:template instructions are present. Rather, an arbitrary XML file can have the
XSLT namespace defined on it and be passed to an XSLT processor as the template, or script, file.

The entire XML file is treated as if it were a single Literal Result Element located within an
xsl:template that matched the root node, i.e., match="/". As such, any non-XSLT XML and its
plain text content are copied to the result tree verbatim. Any XSLT instructions found are evaluated
as encountered and the outcome is also placed in the result tree.

By associating the XSLT namespace with a PPML document, it is possible to add XSLT instructions
and pass that document as a stylesheet to an XSLT processor.

3.7 General sequence of events in XSL

This describes the general sequence, which will be illustrated by the example below.
e The XSL processor program is started with three parameters:
o The initial input XML data file (e.g. the customer records)
o The template file to read (the XSL instructions for how to generate an output file)

o The name of the output file to create

Sample command line (using the Xalan processor xs1.exe):
xsl mydata.xml ppml.xsl ppmlout.xml

o The processor begins by reading the template file and building a tree representation of that
file in memory. Note that the template file must be a well-formed XML file.

e The processor then reads the source XML file (the variable data records), which also must
be wellformed, and builds a tree representation of that file in memory.

o The processor searches for the xsl:template that matches the XPath expression “/”, i.e., the
root node, and applies that template to the node. If no such template exists, the default
template is one that applies templates to the children of the current node, recursively. As
described above, an XSLT file employing a Literal Result Element as Stylesheet is
considered to be the content of a template matching the root node.

www.podi.org Copyright © 2002 PODi Page 15

PPML Templating Specification Version 1.0 — December 12, 2002

Any non-XSLT data, text or XML, is copied to the result tree.

Upon encountering an <xsl:... instruction (these are highlighted in blue in the
examples in this document), the instruction is evaluated and the result is placed on the

result tree. These instructions may locate data in the source XML file, manipulate that data
or both.

Page 16

Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

Chapter 4: Structure of a
PPML Templating Project

4.1 Overview

A PPML Templating project requires two components for TEMPLATE and DATA. An optional third
element, DATA_MAPPER, may connect them:

|:|Jrnlt:PPI'u'ILT

| - -1 TEMPLATE
L f

1

X [}]—|{—--—j§|— + - MAPPER []
1
1

1 |
| [DATA 3

—_—

e The TEMPLATE element contains a special kind of PPML document that is ready to be
merged with variable data as described in this specification.

e The DATA element contains the variable data records for one particular print run. The
most common formats for the data are expected to be XML and comma-separated values.

e An optional DATA_MAPPER element can define data format conversions.

It is expected that these job components will often be delivered from Producer to Consumer in a
single package (see the PPML specification’s “packaging” appendix) but that process is not
required. The template and data may be created and delivered at any time, independent of each

other.

www.podi.org Copyright © 2002 PODi Page 17

PPML Templating Specification Version 1.0 — December 12, 2002

4.2 Element content: Internal vs. External Data

As described in the PPML Specification, PPML document content and resources may be contained
directly in the XML element that requires them, or they may be external, identified by a URI
reference. For PPML Templating, this method is used for the TEMPLATE element and the DATA
element. Below are simple examples of a TEMPLATE element constructed both ways.

4.2.1 External Data example (reference to an external file)

<TEMPLATE ...>
<EXTERNAL DATA Src="Template472.xml” />
</TEMPLATE>

External data may or may not be included in the same PPML Template package. See Appendix D
of the PPML Specification for discussion of the advantages of delivering a complete package, and
for recommended restrictions on the value of the Src attribute to ensure cross-platform portability.

In applications where the PPML Template Producer wants to ensure that a specific version of the
referenced data is used, the Producer can provide a checksum.

4.2.2 Internal Data example

The Internal Data method inserts the content of the template into the TEMPLATE element, verbatim.

<TEMPLATE ...>
<INTERNAL DATA>
(The template data goes here - the content of the file “Templated72.xml”
that was referenced by EXTERNAL DATA in the example above)
</INTERNAL_DATA>
</TEMPLATE>

4.2.3 Example of referencing content downloaded earlier

Content may also be downloaded and saved with a name for reference later. Example:
<TEMPLATE Name="472” Environment="TestFiles”>
<EXTERNAL DATA Src="Template472.xml” />
</TEMPLATE>
The content can later be referenced as follows:
<TEMPLATE REF Name="472” Environment="TestFiles”/>

Page 18 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

4.3 The <PPMLT> Element

4.3.1 Description

The PPMLT element is the top level, encompassing all components of the PPML templating job or
this portion of it. (For instance, the template may be transmitted in one PPMLT element, and the
data may be transmitted in a separate PPMLT element.)

4.3.2 Model

PPMLT (
(DATA
| TEMPLATE, ((DATA_MAPPER | DATA_MAPPER_REF)?,
(DATA | DATA_REF))?
| TEMPLATE_REF, ((DATA_MAPPER | DATA_MAPPER_REF)?,
(DATA | DATA_REF))
| DATA_MAPPER

4.3.3 Attributes

None.

4.3.4 Result of processing a PPMLT element

A PPMLT element can contain, directly or by reference, a template or data or both. The expected
behavior of the Template Consumer for each case is:

4.3.4.1 Template only

Extract the template data from the PPMLT (the INTERNAL_DATA content or the referenced
EXTERNAL_DATA) and save it locally in the Template Consumer.

4.3.4.2 Data only

Extract the data from the PPMLT DATA element (specifically, from the INTERNAL_DATA content
or the referenced EXTERNAL_DATA inside the DATA element) and save it locally in the Template
Consumer.

4.3.4.3 Both template and data are identified

Execute the specified template, operating on the specified input data.

www.podi.org Copyright © 2002 PODi Page 19

PPML Templating Specification Version 1.0 — December 12, 2002

4.4 The <TEMPLATE> Element

4.4.1 Description

The TEMPLATE element identifies the prototype PPML document which will be used to generate
the PPML Instance Documents.

The TEMPLATE element can contain either an INTERNAL_DATA or an EXTERNAL_DATA
element. This means new template instructions (layout and VDP rules) can be downloaded within
the PPML Template instance (INTERNAL_DATA) or the template can be downloaded in advance
and referenced with EXTERNAL_DATA.

Allowing the template to be either internal or external to the dataset provides flexibility that can be
useful in a variety of situations. See examles below.

An optional DATA_STRUCTURE element can be included, to describe the structure of the variable
data expected by the template. This description can be used to allow validation by the receiving
system or by any intermediate processing tools. (Note that the data contained in the DATA
element may not be XML; if not, it must be converted to XML before merging with the template. See
discussion below.)

4.4.2 Model

TEMPLATE (DATA STRUCTURE?, (INTERNAL DATA | EXTERNAL DATA))

4.4.3 Attributes

Required

Attribute /Optional | Type Description

Format Required String The format of this template. Must be a valid MIME type.

Name Optional String Name to be used when referring to this template . The name must
be unique within the template’s environment. If this attribute is
used, the Template Consumer must save this template, making it
available for reference by subsequent PPMLT elements via a
TEMPLATE_REF element.

Environment Optional String Specifies the environment in which the template’s name exists.
(There is no default environment.) Required if the Name attribute
is used.

4.4.4 Context
The TEMPLATE element occurs only within a PPMLT element.

4.4.5 Application note: saving templates for later use

When a PPML Template Consumer processes a TEMPLATE element with a Name attribute (and
therefore also with an Environment attribute), the Template Consumer is required to save the
template for later use, along with the value of the Format attribute.

Page 20 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

Management of templates installed in a Template Consumer is not specified in this document. The
developer of a Template Consumer is responsible for providing a way to manage them, e.g.
deleting templates that are no longer needed.

4.4.6 Examples

Example 1: TEMPLATE element contains an External Data reference. This method
would typically be used in case of repetitive projects, in which the template stays resident at the
receiving system; in such cases, the PPML Template dataset transmits the variable data (in the
DATA element) and references the previously downloaded template file.

<PPMLT>
<TEMPLATE Format="text/xslt+xml">
<EXTERNAL DATA Src="Project4l2.xsl”/>
</TEMPLATE>
<DATA>
<INTERNAL DATA>

Variable data records go here

</INTERNAL DATA>
</DATA>
</PPMLT>

Example 2: The template is contained in an INTERNAL_DATA element; the DATA
element references data that was downloaded earlier. This approach could be used to generate a
different document stream from a set of variable data records that were already sent earlier.

<PPMLT>
<TEMPLATE>
<INTERNAL DATA>

Template data goes here

</INTERNAL_DATA>
</TEMPLATE>
<DATA>
<EXTERNAL DATA Src="Project4l2 2003-10-09. xml” />
</DATA>
</PPMLT>

Example 3: TEMPLATE and DATA elements both contain External Data references.
The following is a complete PPML Templating file, sufficient to cause the printing of a batch of
personalized documents by associating a previously downloaded template with a previously
downloaded variable data file.

<PPMLT>
<TEMPLATE>
<EXTERNAL DATA Src="Project4l2.xsl”/>
</TEMPLATE>
<DATA>
<EXTERNAL DATA Src="Project4l12 2003-10-09.xml”/>
</DATA>

</PPMLT>

www.podi.org Copyright © 2002 PODi Page 21

PPML Templating Specification

Version 1.0 — December 12, 2002

4.5 The <TEMPLATE_REF> Element

4.5.1 Description

The TEMPLATE_REF element identifies, by reference, a template that has already been installed
in the Template Consumer using a TEMPLATE element with the Name and Environment

attributes.

4.5.2 Model

TEMPLATE_REF Empty

4.5.3 Attributes

Required

Attribute /Optional | Type Description

Ref Required String Name of the previously installed template. The name must be
unique within the template’s environment.

Environment Required String Specifies the environment of the template’s name. (There is no
default environment.)

Checksum Optional String Hexadecimal-encoded string, provided as a hint to the Template
Consumer as an aid in identifying the template that was
installed earlier. Template Consumers are not required to
support this attribute.

ChecksumType Optional String Identifies the type of checksum. If this atribute is present, the

Checksum attribute must also be present. Default="MD5".

4.5.4 Context

The TEMPLATE_REF element occurs only within a PPMLT element.

Page 22

Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

4.6 The <DATA> Element

4.6.1 Description

The DATA element contains the database records to be merged with the template, to generate
personalized Instance Documents. For a deeper discussion of handling different types of data, see
Chapter 5: Data.

4.6.2 Model

DATA (DATA STRUCTURE?, (INTERNAL DATA | EXTERNAL DATA))
4.6.3 Attributes
Required

Attribute /Optional | Type Description

Format Required String The format of this data. Any valid MIME type.

Name Optional String Name to be used when referring to this data. The name must be
unique within the template’s environment.

Environment Optional String Specifies the environment in which the template’s name should
be available. (There is no default environment.) Required if the
Name attribute is used.

4.6.4 Context

The DATA element occurs only within a PPMLT element.

4.6.5 Application note: saving data files for later use

When a PPML Template Consumer processes a DATA element with a Name attribute (and
therefore also with an Environment attribute), the Template Consumer is required to save the data
for later use, along with the value of the Format attribute.

Management of data files installed in a Template Consumer is not specified in this document. The
developer of a Template Consumer is responsible for providing a way to manage them, e.g.
deleting files that are no longer needed.

4.6.6 Character set conversion

The PPML Template Consumer may need to convert the data from the character set specified in the
enclosed data element to the character set expected by the Template Consumer’s template
language. The only character set explicitly supported by XML parsers is Unicode; Template
Consumers are not required to support any other character set.

Example: XSLT expects the Unicode character set. If the data in the DATA element is encoded in
EBCDIC, the Template Consumer must map the incoming EBCDIC characters to the corresponding
Unicode characters.

www.podi.org Copyright © 2002 PODi Page 23

PPML Templating Specification Version 1.0 — December 12, 2002

4.7 The <DATA_REF> Element

4.7.1 Description
The DATA_REF element identifies, by reference, a data file that has already been installed in the
Template Consumer using a DATA element with the Name and Environment attributes.

4.7.2 Model
DATA_REF Empty

4.7.3 Attributes

Required

Attribute /Optional | Type Description

Ref Required String Name of the previously installed data file. The name must be
unique within the environment.

Environment Required String Specifies the environment of the name. (There is no default
environment.)

Checksum Optional String Hexadecimal-encoded string, provided as a hint to the Template
Consumer as an aid in identifying the data file that was installed
earlier. Template Consumers are not required to support this
attribute.

ChecksumType Optional String Identifies the type of checksum. If this attribute is present, the
Checksum attribute must also be present. Default="MD5".

4.7 .4 Context
The DATA_REF element occurs only within a PPMLT element.

Page 24 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

4.8 The <EXTERNAL_DATA> Element

4.8.1 Description

An EXTERNAL_DATA element identifies, by location and access method, a single content datum
(e.g. a template or data file).

The EXTERNAL_DATA type is inherited from the PPML specification, with the addition of the
CharacterSet attribute. Any changes to this element in the PPML XML Schema will automatically
propagate to the PPMLT schema.

4.8.2 Model
EXTERNAL_DATA EMPTY

4.8.3 Attributes

Required

Attribute /Optional | Type Description

Src Required URI URI (Uniform Resource Identifier) string identifying the
external data. See RFC2396 for full details of URIs." See
also application note below.

Checksum Optional String Hexadecimal-encoded string, provided as a hint to the
Template Consumer. Template Consumers are not
required fo support this aftribute.

ChecksumType Optional String Identifies the type of checksum. If this attribute is present,
the Checksum attribute must also be present.
Default="MD5".

CharacterSet Optional String Identifies the character set used in the referenced data.
Default="UTF-8". See description under
INTERNAL_DATA.

4.8.4 Context
EXTERNAL_DATA may occur within TEMPLATE and DATA.

4.8.5 Application note regarding URI

A PPML Template Consumer is not required to support any particular access protocol (for instance,
HTTP), so a data emitter cannot be certain that URIs in EXTERNAL_DATA will be readable by an
unknown Template Consumer. Therefore, if a data emitter wants to ensure that the template will be
readable by any Template Consumer, INTERNAL_DATA should be used.

' RFC2396 is at http://www.ietf.org/rfc/rfc2396.txt. A good overview of URIs and URLs is at
http: //www.w3.org/Addressing/Overview.html.

www.podi.org Copyright © 2002 PODi Page 25

http://www.iana.org/assignments/character-sets

PPML Templating Specification

Version 1.0 — December 12, 2002

4.9 The <INTERNAL DATA> Element

4.9.1 Description

An INTERNAL_DATA element is the same as an EXTERNAL_DATA element except that it
contains the actual data, instead of referring to it. Therefore it has no Src attribute.

4.9.2 Model
INTERNAL_DATA ANY

4.9.3 Attributes

Required

Attribute /Optional Type Description

Encoding Optional Keyword Encoding scheme of the data: None (default) or any
encoding name registered with the Internet Assigned
Numbers Authority (IANA).?> However, note that Template
Consumers are only required to support Base64.

CharacterSet Optional String Specifies the character set of the decoded data. For use
with text content or any other media type containing
characters. Value: any character set name registered with
the Internet Assigned Numbers Authority (IANA).> Default:
the character set of the enclosing PPMLT file.

Label Optional String Any arbitrary string to identify this element, for instance in
case an error message is necessary.

Creator Optional String Identifies the application that created this content.

4.9.4 Context

INTERNAL_DATA may occur within TEMPLATE and DATA.

? The valid encoding name strings are listed at http://www.isi.edu/in-notes/iana/assignments/transfer-

encodings.

® The valid character set name strings are at http://www.isi.edu/in-notes/iana/assignments/character-sets.

Page 26

Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

4.10 The <DATA_STRUCTURE> Element

4.10.1 Description

The optional DATA_STRUCTURE element describes the structure of the data expected by the PPML
Template script.

Note that any method of description is allowed as content of the DATA_STRUCTURE element, e.g.
DTD, RELAX, XML Schema or even plain text.

In XML applications, the DATA_STRUCTURE inside TEMPLATE describes the format of the XML
expected by that template. This XML may be provided directly or generated at the PPML Template
Consumer from non-XML data.

The DATA_STRUCTURE inside DATA describes the structure of that DATA.

4.10.2 Model
DATA_STRUCTURE (INTERNAL_DATA | EXTERNAL_DATA)

4.10.3 Attributes

Required
Attribute /Optional | Type Description
Format Required String The format of this description. Must be a valid MIME type.

4.10.4 Context
The DATA_STRUCTURE element occurs within a TEMPLATE or DATA element.

4.10.5 Notes

It is assumed that most, if not all, initial implementations of PPML Templating will use the
DATA_STRUCTURE elements for documentation purposes only. However the information stored
there can be used to automate the process of mating databases with templates. See also the
DATA_MAPPER element.

www.podi.org Copyright © 2002 PODi Page 27

PPML Templating Specification Version 1.0 — December 12, 2002

4.11 The <DATA_MAPPER> element

4.11.1 Description

The optional DATA_MAPPER element contains a script designed to reformat the input data
(specified in the DATA element) to the form expected by a PPML Template script. The result of
applying DATA_MAPPER to the DATA becomes the inputto TEMPLATE.

If DATA is sent separately from TEMPLATE, each may have an associated DATA_MAPPER
element. This allows flexibility in configuring the workflow, for instance to adapt to the needs of
individual customers or systems. Examples:

e The incoming data can be transformed into the format expected by the template

e A PPML Template Consumer system could have several DATA_MAPPER scripts available, to
accommodate a variety of different incoming data formats.

e Both might be true. For instance, a DATA_MAPPER script may be included in the PPMLT
element that includes the DATA element, which transforms the data into the format expected
by another DATA_MAPPER script in the PPMLT element that contains the template. In this
case, the DATA_MAPPER associated with DATA is applied first.

Optionally, the DATA_MAPPER element may also contain descriptions of the structure of the input
and output data describing the input format expected by the script and the output that it will
generate. Initial PPML Templating implementations may only use these elements for documentation —
to document what format is expected as input to the XSLT script and what format the will output.
However future implementations may consider making some intelligent use of the information
conveyed in these descriptions.

4.11.2 Model

DATA MAPPER ((INPUT DATA STRUCTURE, OUTPUT DATA STRUCTURE) ?,
(INTERNAL DATA | EXTERNAL DATA))

4.11.3 Attributes

Required

Attribute /Optional | Type Description

Format Optional String The format of this template. Must be a valid MIME type.

Name Optional String Name to be used when referring to this data mapper. The name
must be unique within the environment.

Environment Optional String Specifies the environment in which the mapper’s name should
be available. (There is no default environment.) Required if the
Name attribute is used.

4.11.4 Context
DATA_MAPPER occurs only at the top level, ina PPMLT element.

Page 28 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

4.11.5 Notes
If INPUT_DATA_STRUCTURE is present, then OUTPUT_DATA_STRUCTURE must follow it.

4.11.6 Application note: saving data mappers for later use

When a PPML Template Consumer processes a DATA_MAPPER element with a Name attribute
(and therefore also with an Environment attribute), the Template Consumer is required to save the
mapper for later use, along with the value of the Format attribute.

Management of data mappers installed in a Template Consumer is not specified in this document.
The developer of a Template Consumer is responsible for providing a way to manage them, e.g.
deleting files that are no longer needed.

www.podi.org Copyright © 2002 PODi Page 29

PPML Templating Specification Version 1.0 — December 12, 2002

4.12 The <DATA_MAPPER_REF> Element

4.12.1 Description

The DATA_MAPPER_REF element identifies, by reference, a data mapper that has already been
installed in the Template Consumer using a DATA_MAPPER element with the Name and
Environment attributes.

4.12.2 Model
DATA_MAPPER_REF Empty

4.12.3 Attributes

Required

Attribute /Optional | Type Description

Ref Required String Name of the previously installed mapper. The name must be
unique within the environment.

Environment Required String Specifies the environment of the name. (There is no default
environment.)

Checksum Optional String Hexadecimal-encoded string, provided as a hint to the Template
Consumer as an aid in identifying the mapper that was installed
earlier. Template Consumers are not required to support this
attribute.

ChecksumType Optional String Identifies the type of checksum. If this atribute is present, the
Checksum attribute must also be present. Default="MD5".

4.12.4 Context
The DATA_REF element occurs only within a PPMLT element.

Page 30 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

4.13 The <INPUT_DATA_STRUCTURE> Element

4.13.1 Description

The INPUT_DATA_STRUCTURE element describes the data format of the data being converted by
a DATA_MAPPER element. As noted in the previous section, this is provided on an “information
only” basis — there is no requirement that the receiving system do anything with this information.

In the case of an XML database, the content of INPUT_DATA_STRUCTURE would be an XML
Schema or DTD describing the format of that database.

4.13.2 Model
INPUT_DATA_STRUCTURE (INTERNAL_DATA | EXTERNAL_DATA)

4.13.3 Attributes

Required
Attribute /Optional | Type Description
Format Required String The format of this description.

4.13.4 Context
The INPUT_DATA_STRUCTURE element occurs only within a DATA_MAPPER element.

www.podi.org Copyright © 2002 PODi Page 31

PPML Templating Specification

Version 1.0 — December 12, 2002

4.14 The <OUTPUT_DATA_STRUCTURE> Element

4.14.1 Description

Like INPUT_DATA_STRUCTURE, this is an optional “information only” element within
DATA_MAPPER. It describes the data format of the output generated by the DATA_MAPPER’s script.

4.14.2 Model
OUTPUT_DATA_STRUCTURE

4.14.3 Attributes

(INTERNAL_DATA | EXTERNAL_DATA)

Required
Attribute /Optional | Type Description
Format Required String The format of this description.

4.14.4 Context
The OUTPUT_DATA_STRUCTURE element occurs only within a DATA_MAPPER element.

Page 32

Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

Chapter 5: Data

5.1 Introduction

The most natural data format for input to PPML Templating is XML. However, some data sources
(spreadsheets, legacy systems, etc) are not set up to export in XML format; instead, they typically
output delimiter-separated values or plain unformatted line data.

This chapter describes an optional but standardized method of encoding record-oriented data into
XML, in a PPML Template <R> and <F> structure, which is contained in a root <RECORDS>
element. This information may be of use for developers of systems who wish to incorporate this
ability into their PPML Template Consumer. A pre-processor could also be developed to convert the
data to R/F format, placing the result into a separate file which can be referenced using
EXTERNAL_DATA.

5.1.1 Delimiter-separated values (“DSV”)

In this data format, each individual record is on a separate line, and the fields are separated with a
delimiter. Typically a comma is used, resulting in the “comma-separated values” format (CSV) that
is commonly output by applications such as Microsoft Excel. A common alternative is tab-delimited
data.

Converting DSV data to R/F format is trivial. Each line of input data (i.e. each record) becomes an
<R> element, and each field value is placed into an <F> element. Example:

CSV data:

John,Watson,12 Main St.,Anywhere,NY,10021
Mary,Smith,47 Broadview,QOurTown,NH,03079

Converted to R/F format:

<RECORDS>
<R>
<F>John</F>
<F>Watson</F>
<F>12 Main St.</F>
<F>Anywhere</F>
<F>NY</F>
<F>10021</F>
</R>
<R>
<F>Mary</F>
<F>Smith</F>
<F>47 Broadview</F>
<F>QurTown</F>
<F>NH</F>
<F>03079</F>
</R>
</RECORDS>

www.podi.org Copyright © 2002 PODi Page 33

PPML Templating Specification Version 1.0 — December 12, 2002

5.1.2 Line data

Some computer systems output data with no delimiters. Instead, fields are identified by their fixed
column position.

This example shows the same data as in the previous section:

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
John Watson 12 Main St. Anywhere NY 10021
Mary Smith 47 Broadview OQurTown NH 03079

In this example the text in columns 1-12 is the first field, columns 13-22 is the second field, etc.
When converted to R/F format the result would be the same as the example above.

Many application tools are available to parse line data into fields.

5.1.3 Parameterizing these conversions

PPML Template workflow designers may have a choice regarding how to handle data formats that
are essentially identical except for certain parameters. For instance tab-delimited data is essentially
the same as comma-delimited.

Some workflows may find it more convenient to have separate Mapper scripts (section 4.11) for
comma-delimited and tab-delimited cases; these scripts can easily be selected by a reference in
EXTERNAL_DATA. Others may prefer to design a single script that handles all delimiter-separated
files, using a parameter to identify what the delimiter is. In this case the script’s parameters could
be passed from the Producer to the script via arguments in the URI.

Example: a user might create a universal script for handling delimiter-separated values. The script
might accept a parameter named “delim”. To use that script for files delimited with tabs (0x09), a
URI to reference that script might be (the parameter is shaded for easy identification):

<DATA_MAPPER>
<EXTERNAL_DATA Src="MyDelimiterScript.xsl?delim=	">
</DATA_MAPPER>

When the same script is used to process a file delimited with commas (0x2C), the URI might be:

<DATA_MAPPER>
<EXTERNAL_DATA Src="MyDelimiterScript.xsl?delim=,">
</DATA_MAPPER>

Page 34 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

5.2 The <RECORDS> element

5.2.1 Description

The RECORDS element is the top level, providing the root node that contains all the R and F
records.

5.2.2 Model

RECORDS (R*)

5.2.3 Atributes

None.

5.2.4 Context

Within a PPMLT element, RECORDS occurs only in INTERNAL_DATA. RECORDS may also
occur in a separate data file referenced by EXTERNAL_DATA.

www.podi.org Copyright © 2002 PODi Page 35

PPML Templating Specification Version 1.0 — December 12, 2002

5.3 The <R> element

5.3.1 Description

The R element contains one record of variable data, consisting of one or more F elements.

5.3.2 Model

R (F'+)

5.3.3 Atributes

None.

5.3.4 Context
R occurs only in DATA.

Page 36 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002

PPML Templating Specification

5.4 The <F> element

5.4.1 Description

The F element contains one field of data within a record.

5.4.2 Models

F (#PCDATA)
5.4.3 Attributes
Required
Attribute /Optional Type Description
Name Optional String The name of this field. This attribute is provided as a

convenience for human readability, including cross-
referencing to the original (non-XML) file. It may also be of
use in workflows that require named fields.

5.4.4 Context

The F element occurs only inside R.

www.podi.org

Copyright © 2002 PODi Page 37

PPML Templating Specification Version 1.0 — December 12, 2002

5.5 Very long data streams

When presented with very long data streams, such as hundreds of thousands of records, a tree-
oriented scripting system such as XSLT can become resource-intensive (causing problems with speed
or memory). The Xpath expressions within XSLT have random access to the entire XML data tree, so
XSLT processing effectively requires reading the entire XML tree, and most XSLT processors have
significant performance problems when the tree is large.

Two alternatives are available to avoid this problem:
e A data emitter can transmit the data in multiple, smaller PPMLT files. See example 1 below.

e PPML Template Consumers are allowed to break up the incoming data into smaller “chunks” at
the boundary between record boundaries. For XML data, the Template Consumer is allowed to
terminate the tfree between immediate children of the root element. See example 2.

Note: In applications where the template requires multiple records of input data per
Instance Document, care must be taken to “chunk” between appropriate record groups. A
DATA_MAPPER script can be used to pre-process the data for this purpose, as shown in
example 3 below.

The following PPMLT file is used in the examples below.

<PPMLT>
<TEMPLATE REF Env="Myco” Ref="MyTemplate”/>
<DATA>
<INTERNAL_ DATA>
<RECORDS>
<R><F>Recordl..... </R>
<R><F>Record2..... </R>
<R><F>Record3..... </R>
<R><F>Record99..... </R>
</RECORDS>
</INTERNAL_DATA>
<DATA>
</PPMLT>

Example 1: Data emitter breaks the data into smaller PPMLT files

The data emitter closes off one PPMLT element and opens another one, so that the PPML Template
Consumer processes a long job as several small ones. The lines highlighted in blue are inserted:

<PPMLT>
<TEMPLATE REF Env="Myco” Ref="MyTemplate”/>
<DATA>
<INTERNAL DATA>
<RECORDS>
<R><F>Recordl..... </R>
<R><F>Record2..... </R>

<R><F>Record50..... </R>
</RECORDS>
</INTERNAL DATA>
<DATA>
</PPMLT>
<PPMLT>

Page 38 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

<TEMPLATE REF Env="Myco” Ref="MyTemplate”/>
<DATA>
<INTERNAL DATA>
<RECORDS>
<R><F>Record51l..... </R>

<R><F>Record99..... </R>
</RECORDS>
</INTERNAL DATA>
<DATA>
</PPMLT>

Example 2: Template Consumer “chunks” the data

In this method the Template Consumer breaks the data appropriate boundaries. In XML data, this is
at any immediate child of the root element. For the “R/F” record/field structure described in this
specification, the root element is RECORDS and the immediate children are the R records, so the
Template Consumer may terminate the tree after any R element and start a new tree with the next
R element, as if another root element had been inserted.

With chunking, the template processor is invoked more than once, and sees different sets of data
on the different invocations, for instance:

Invocation 1:

<RECORDS>
<R><F>Recordl..... </R>
<R><F>Record2..... </R>
<R><F>Record3..... </R>
<R><F>Record50..... </R>
</RECORDS>

Invocation 2:

<RECORDS>
<R><F>Record51..... </R>
<R><F>Record99..... </R>
</RECORDS>

Example 3: Using a DATA_MAPPER to perform multi-record grouping

Some templates may require that several records of data be kept together (e.g. applications where
the data for one customer occupies three records). In this case, chunking between any immediate
child (an R element) could result in invalid grouping of records. This problem can be circumvented
by using a Mapper script to group elements together by adding a parent XML element. For
instance:

Original ungrouped data:

<RECORDS>
<R><F>Recordl..... </R>
<R><F>Record2..... </R>
<R><F>Record3..... </R>
<R><F>Recordd..... </R>
<R><F>Record5..... </R>
<R><F>Recordb6..... </R>
<R><F>Record97..... </R>
<R><F>Record98..... </R>

www.podi.org Copyright © 2002 PODi Page 39

PPML Templating Specification

Version 1.0 — December 12, 2002

<R><F>Record99..

</RECORDS>

After processing by an appropriate Mapper:

In this example, the Template Producer provided a Mapper script that inserts a parent
CUSTOMER element around sets of three records. (“Customer” is an arbitrary name in this
example.) When that Mapper script is executed by the Template Consumer, the above
data is fransformed into the following structure. The immediate child of RECORDS is now
CUSTOMER, so chunking will break at safe boundaries:

<RECORDS>
<CUSTOMER>
<R><F>Recordl..... </R>
<R><F>Record2..... </R>
<R><F>Record3..... </R>
</CUSTOMER>
<CUSTOMER>
<R><F>Record4..... </R>
<R><F>Record5..... </R>
<R><F>Record6..... </R>
</CUSTOMER>
<CUSTOMER>
<R><F>Record97..... </R>
<R><F>Record98..... </R>
<R><F>Record99..... </R>
<CUSTOMER>
</RECORDS>

Page 40

Copyright © 2002 PODi

www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

Appendix A:
Sample Application

A.1 Introduction

This chapter contains a complete PPML Templating job, with both the TEMPLATE and the DATA
expressed as INTERNAL_DATA. It then shows how the job can be made increasingly more
efficient by storing more and more repetitive content in the Template Consumer: first the PPML
Reusable Object definitions and then the document template.

A.2 Example 1: PPML Templating code, including
Reusable Object definitions, complete PPML Template
and Data Mapper, and data records

This code totals 14.5k; the 25 records of customer data at the end add 3.5k, for a total of 18k.

<?xml version="1.0" encoding="UTF-8"?>
<PPMLT xmlns="http://www.podi.org/ppmlt/ppmlt001.xsd">
<TEMPLATE Format="application/xslt+xml">
<INTERNAL_DATA>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:fo="http://www.w3.0rg/1999/XSL/Format" xmlns:svg="svg" version="1.0">
<xsl:output indent="yes"/>
<xsl:strip-space elements="*"/>
<xsl:template match="/">
<!-- Copyright Atlas Software BV -->

The color-highlighted block below contains the prototype PPML file. The yellow portion will be
output once; it contains the startofjob information, including definitions of reusable content, sheet
layout, etc. The blue-shaded portion contains an XSLT “for-each”, so it will be output repeatedly,
once for each customer record, as explained below.

<PPML>
<DOCUMENT SET Label="Job Number 1">
<IMPOSITION Name="Imporef">
<SIGNATURE Nrows="1" Ncols="1">
<CELL Row="1" Col="1" Face="Up" PageOrder="s"/>
</SIGNATURE>
</IMPOSITION>
<PRINT_ LAYOUT>
<PAGE LAYOUT TrimBox="0 0 612 792"/>
<SHEET LAYOUT Hsize="612" Vsize="792">
<IMPOSITION REF Name="Imporef"/>
</SHEET_LAYOUT>
</PRINT LAYOUT>
<PRIVATE INFO Creator="Xeikon" Identifier="MasterVDF"/>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="612 792">
<EXTERNAL DATA Src="OldsMobile.eps"/>
</SOURCE>
</OBJECT>
<OCCURRENCE_LIST>

www.ppml.org PRELIMINARY and CONFIDENTIAL Copyright © 2002 PODi (www.podi.org) Page 41

PPML Templating Specification Version 1.0 — December 12, 2002

<OCCURRENCE Name="XMASTER OldsMobile.eps 1 0 0 1 0 Q"
Environment="Demo">
<VIEW>
<TRANSFORM Matrix="1 0 0 1 0 0"/>
</VIEW>
</OCCURRENCE>
</OCCURRENCE LIST>
</REUSABLE OBJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="612 792">
<INTERNAL_ DATA>
gsave
/psmPaintRect { gsave newpath 4 2 roll moveto 1 index 0
rlineto 0
exch rlineto neg 0 rlineto fill grestore } bind def
0 0 0 0 setcmykcolor
0 0 612 792 psmPaintRect
grestore
</INTERNAL DATA>
</SOURCE>
</OBJECT>
<OCCURRENCE LIST>
<OCCURRENCE Name="XMASTER_BackForeground 1 1" Environment="Demo"/>
</OCCURRENCE LIST>
</REUSABLE70BJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="165.4 15">
<INTERNAL DATA>
gsave
/psmPaintRect { gsave newpath 4 2 roll moveto 1 index 0
rlineto 0
exch rlineto neg 0 rlineto fill grestore } bind def
0 0 0 1 setcmykcolor
0 0 165.421707153 15.0005950928 psmPaintRect
grestore
</INTERNAL DATA>
</SOURCE>
</OBJECT>
<OCCURRENCE_LIST>
<OCCURRENCE Name="BackForeground 2 1" Environment="Demo"/>
</OCCURRENCE_LIST>
</REUSABLE70BJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="165.4 15">
<INTERNAL DATA>
gsave
/psmPaintRect { gsave newpath 4 2 roll moveto 1 index 0
rlineto 0
exch rlineto neg 0 rlineto fill grestore } bind def
0 0 0 1 setcmykcolor
0 0 165.421707153 15.0004425049 psmPaintRect
grestore
</INTERNAL7DATA>
</SOURCE>
</OBJECT>
<OCCURRENCE LIST>
<OCCURRENCE Name="BackForeground 3 1" Environment="Demo"/>
</OCCURRENCE_LIST>
</REUSABLE70BJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="165.4 14">
<INTERNAL DATA>
gsave
/psmPaintRect { gsave newpath 4 2 roll moveto 1 index 0
rlineto 0
exch rlineto neg 0 rlineto fill grestore } bind def

Page 42 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

0 0 0 1 setcmykcolor
0 0 165.421707153 14.0002288818 psmPaintRect
grestore
</INTERNAL DATA>
</SOURCE>
</OBJECT>
<OCCURRENCE_LIST>
<OCCURRENCE Name="BackForeground 4 1" Environment="Demo"/>
</OCCURRENCE_LIST>
</REUSABLE70BJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="164.4 15">
<INTERNAL DATA>
gsave
/psmPaintRect { gsave newpath 4 2 roll moveto 1 index 0
rlineto 0
exch rlineto neg 0 rlineto fill grestore } bind def
0 0 0 1 setcmykcolor
0 0 164.422149658 15.0004425049 psmPaintRect
grestore
</INTERNAL7DATA>
</SOURCE>
</OBJECT>
<OCCURRENCE LIST>
<OCCURRENCE Name="BackForeground 5 1" Environment="Demo"/>
</OCCURRENCE_LIST>
</REUSABLE OBJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="190.5 12.5">
<INTERNAL DATA>
gsave
/psmPaintRect { gsave newpath 4 2 roll moveto 1 index 0
rlineto 0
exch rlineto neg 0 rlineto fill grestore } bind def
0 0 0 1 setcmykcolor
0 0 190.499694824 12.5 psmPaintRect
grestore
</INTERNAL7DATA>
</SOURCE>
</OBJECT>
<OCCURRENCE LIST>
<OCCURRENCE Name="BackForeground 6 1" Environment="Demo"/>
</OCCURRENCE LIST>
</REUSABLE OBJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="191 94">
<EXTERNAL DATA Src="PURPLE"/>
</SOURCE>
</OBJECT>
<VIEW>
<CLIP_RECT Rectangle="0.04066 0.227 191 93.77"/>
</VIEW>
<OCCURRENCE LIST>
<OCCURRENCE Name="PURPLE 1 0 0 1 -0.04066 -0.227"
Environment="Demo">
<VIEW>
<TRANSFORM Matrix="1 0 0 1 -0.04066 -0.227"/>
</VIEW>
</OCCURRENCE>
</OCCURRENCE LIST>
</REUSABLE OBJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="191 94">
<EXTERNAL DATA Src="BLUE"/>
</SOURCE>
</OBJECT>

www.ppml.org PRELIMINARY and CONFIDENTIAL Copyright © 2002 PODi (www.podi.org) Page 43

PPML Templating Specification Version 1.0 — December 12, 2002

<VIEW>
<CLIP_RECT Rectangle="0.04066 0.227 191 93.77"/>
</VIEW>
<OCCURRENCE LIST>
<OCCURRENCE Name="BLUE 1 0 0 1 -0.04066 -0.227" Environment="Demo">
<VIEW>
<TRANSFORM Matrix="1 0 0 1 -0.04066 -0.227"/>
</VIEW>
</OCCURRENCE>
</OCCURRENCE_LIST>
</REUSABLE OBJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="191 94">
<EXTERNAL DATA Src="SILVER"/>
</SOURCE>
</OBJECT>
<VIEW>
<CLIP_RECT Rectangle="0.04066 0.227 191 93.77"/>
</VIEW>
<OCCURRENCE LIST>
<OCCURRENCE Name="SILVER 1 0 0 1 -0.04066 -0.227" Environment="Demo">
<VIEW>
<TRANSFORM Matrix="1 0 0 1 -0.04066 -0.227"/>
</VIEW>
</OCCURRENCE>
</OCCURRENCE_LIST>
</REUSABLE OBJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="191 94">
<EXTERNAL DATA Src="GREENGRAY" />
</SOURCE>
</OBJECT>
<VIEW>
<CLIP_RECT Rectangle="0.04066 0.227 191 93.77"/>
</VIEW>
<OCCURRENCE LIST>
<OCCURRENCE Name="GREEN/GRAY71 0 01 -0.04066 -0.227"
Environment="Demo">
<VIEW>
<TRANSFORM Matrix="1 0 0 1 -0.04066 -0.227"/>
</VIEW>
</OCCURRENCE>
</OCCURRENCE LIST>
</REUSABLE OBJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="191 94">
<EXTERNAL DATA Src="BLACK"/>
</SOURCE>
</OBJECT>
<VIEW>
<CLIP_RECT Rectangle="0.04066 0.227 191 93.77"/>
</VIEW>
<OCCURRENCE LIST>
<OCCURRENCE Name="BLACK 1 0 0 1 -0.04066 -0.227" Environment="Demo">
<VIEW>
<TRANSFORM Matrix="1 0 0 1 -0.04066 -0.227"/>
</VIEW>
</OCCURRENCE>
</OCCURRENCE_LIST>
</REUSABLE OBJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="191 94">
<EXTERNAL DATA Src="GOLD"/>
</SOURCE>
</OBJECT>
<VIEW>

Page 44 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

<CLIP_RECT Rectangle="0.04066 0.227 191 93.77"/>
</VIEW>
<OCCURRENCE_LIST>
<OCCURRENCE Name="GOLD 1 0 0 1 -0.04066 -0.227" Environment="Demo">
<VIEW>
<TRANSFORM Matrix="1 0 0 1 -0.04066 -0.227"/>
</VIEW>
</OCCURRENCE>
</OCCURRENCE_LIST>
</REUSABLE70BJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="191 94">
<EXTERNAL DATA Src="RED"/>
</SOURCE>
</OBJECT>
<VIEW>
<CLIP_RECT Rectangle="0.04066 0.227 191 93.77"/>
</VIEW>
<OCCURRENCE_LIST>
<OCCURRENCE Name="RED 1 0 0 1 -0.04066 -0.227" Environment="Demo">
<VIEW>
<TRANSFORM Matrix="1 0 0 1 -0.04066 -0.227"/>
</VIEW>
</OCCURRENCE>
</OCCURRENCE_LIST>
</REUSABLE70BJECT>
<REUSABLE OBJECT>
<OBJECT Position="0 0">
<SOURCE Format="application/postscript" Dimensions="190.9 93.55">
<INTERNAL DATA>
gsave
/psmPaintRect { gsave newpath 4 2 roll moveto 1 index 0
rlineto 0
exch rlineto neg 0 rlineto fill grestore } bind def
0 0 0 0 setcmykcolor
0 0 190.918685913 93.5459136963 psmPaintRect
grestore
</INTERNAL7DATA>
</SOURCE>
</OBJECT>
<OCCURRENCE LIST>
<OCCURRENCE Name="BackForeground 7 1" Environment="Demo"/>
</OCCURRENCE_LIST>
</REUSABLE OBJECT>

The following blue-shaded copy will be output once for each XML CUSTOMER element. In PPML
without templating, the blue portion (approximately 4600 bytes) would be output once for each
customer record.

<xsl:for-each select="//CUSTOMER">
<DOCUMENT>
<PAGE>
<MARK Position="0 0">
<OCCURRENCE _REF Ref="XMASTER BackForeground 1 1"
Environment="Demo" />
</MARK>
<MARK Position="0 0">
<OCCURRENCE REF Ref="XMASTER OldsMobile.eps 1 0 0 1 0 0"
Environment="Demo" />
</MARK>
<MARK Position="334 605">
<OCCURRENCE_REF Ref="BackForeground 2 1" Environment="Demo"/>
</MARK>
<MARK Position="334 605">
<OBJECT Position="0 0">
<SOURCE Format="image/svg-xml" Dimensions="165 15">
<INTERNAL DATA>
<svg:svg width="165pt" height="15pt">

www.ppml.org PRELIMINARY and CONFIDENTIAL Copyright © 2002 PODi (www.podi.org) Page 45

PPML Templating Specification Version 1.0 — December 12, 2002

Page 46 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

Note for comparison: In PPML without templating, each record would add another copy of the
DOCUMENT element shown in blue above. This would lengthen the file by about 4.5k per record.

In this example with 25 records, the PPML code would be 122k longer, for a total of approximately
140k. If it were fully shown in this specification, this example without templating would be 56

pages long.

</DOCUMENT_SET>
</PPML>
</xsl:template>
</xsl:stylesheet>
</INTERNAL_DATA>
</TEMPLATE>

The data mapper element is the same in the first two versions of this example.

<DATA MAPPER Format="application/xslt+xml">
<INTERNAL DATA>

www.ppml.org PRELIMINARY and CONFIDENTIAL Copyright © 2002 PODi (www.podi.org) Page 47

PPML Templating Specification Version 1.0 — December 12, 2002

<STREET>
<xsl:value-of select="F[2]"/>
</STREET>
<PHONE>
<xsl:value-of select="F[3]"/>
</PHONE>
<EMAIL>
<xsl:value-of select="F[4]"/>
</EMAIL>
<DESCRIPTION>
<xsl:value-of select="F[5]"/>
</DESCRIPTION>
<IMAGE>
<xsl:value-of select="F[6]"/>
</IMAGE>
</CUSTOMER>
</xsl:template>
<xsl:template match="/">
<CUSTOMERS>
<xsl:apply-templates/>
</CUSTOMERS>
</xsl:template>

</xsl:stylesheet>

</INTERNAL DATA>
</DATA MAPPER>

The Data element is the same in all versions of this example.

<DATA Format="application/xml">
<INTERNAL_ DATA>

<RECORDS>

<R><F>Cynthia Proctor</F><F>625 Missouri Street</F><F>510-372-7500</F>
<F>dcgraphicdesigns@hotmail.com</F><F>1998 Purple Intrigue</F>
<F>PURPLE</F></R>

<R><F>Dr. Loose</F><F>Whoville</F><F>123-345-5678</F>
<F>Loose@whoville.com</F><F>1998 Blue Intrigue</F><F>BLUE</F></R>

<R><F>Henry Polard</F><F>33 World Trade Blvd.</F><F>650-855-9367</F>
<F>polard@wenet.net</F><F>1998 Silver Intrigue</F><F>SILVER</F></R>

<R><F>Al Joshua</F><F>4567 My Way</F><F>123-456-789</F>
<F>ajoshua@psmail.com</F><F>1998 Silver Intrigue</F><F>SILVER</F></R>

<R><F>Michelle Walker</F><F>860 36th Ave.</F><F>415/831-1019</F>
<F>shelwalker@aol.com</F><F>1998 Green/gray Intrigue</F>
<F>GREEN/GRAY</F></R>

<R><F>Craig Kohler</F><F>860 36th Ave.</F><F>415/831/1019</F>
<F>craig.kohler@schwab.com</F><F>1998 Black Intrigue</F><F>BLACK</F></R>

<R><F>Ken Griffith</F><F>34286 Quartz St.</F><F>510-796-4975</F>
<F>ken griffith@splashtech.com</F><F>1998 White Intrigue</F>
<F>WHITE</F></R>

<R><F>Harry Raaphorst</F><F>Buys Ballotstraat 17-19</F><F>31-341-426700</F>
<F>harry.raaphorst@atlasssoftware.nl</F><F>1998 Blue
Intrigue</F><F>BLUE</F></R>

<R><F>Michael Barnes</F><F>The Maxwell Company</F><F>415-123-4567</F>
<F>maxwell@edu</F><F>1998 Gold Intrigue</F><F>GOLD</F></R>

<R><F>Gregg Fox</F><F>200 Canal View Blvd. 831</F><F>716-427-4262</F>
<F>gregg fox@mc.xerox.com</F><F>1998 Gold Intrigue</F><F>GOLD</F></R>

<R><F>Paul Lorton, Jr</F><F>1265 Altschul Av.</F><F>650-854-
2406</F><F>lorton@usfca.edu</F><F>1998 Red Intrigue</F><F>RED</F></R>

<R><F>Linda Jackson</F><F>405 - 1263 Barclay Street</F><F>604-844-2253</F>
<F>linda jackson@splashtech.com</F><F>1998 Black Intrigue</F> <F>BLACK</F>
</R>

<R><F>Denis Severson</F><F>3400 Hillview Ave.</F><F>650-813-7158</F>
<F>severson@parc.xerox.comn</F><F>1998 Red Intrigue</F><F>RED</F></R>

<R><F>Jindong Chen</F><F>3400 Hillview Ave, PAHV 12</F><F>650-813-7338</F>
<F>jchen@parc.xerox.com</F><F>1998 Gold Intrigue</F><F>GOLD</F></R>

<R><F>Gary Roth</F><F>8758 Wescott Court</F><F>619-484-3226</F>
<F>gary roth@splashtech.com</F><F>1998 Blue Intrigue</F><F>BLUE</F></R>

<R><F>Susan Prischmann</F><F>3930 North Pinegrove, Apt.</F><F>312-849-4361</F>
<F>sprischmann@currentassets.com</F><F>1998 Green/charcoal
Intrigue</F><F>GREENCHARCOAL</F></R>

Page 48

Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

<R><F>Sue Hoffmann</F><F>2000 Powell Street</F><F>657-1777</F>
<F>sue_hoffmann@thenet.com</F> <F>1998 Red Intrigue</F><F>RED</F></R>

<R><F>Rick Placak</F><F>130 So. Center</F><F>702-329-
3145</F><F>rplacak@thenet.com</F><F>1998 Red Intrigue</F><F>RED</F></R>

<R><F>Betsy Pryser</F><F>1130 N. Dearborn, #1603</F><F>312-397-
9250</F><F>epryser@ix.netcom.com</F><F>1998 Silver
Intrigue</F><F>SILVER</F></R>

<R><F>Mike Mayo</F><F>124 West Oxmoor</F><F>205-942-
2222</F><F>jmmayo@worldnet.att.net</F><F>1998 Gold
Intrigue</F><F>GOLD</F></R>

<R><F>Armand Petri</F><F>1508 Blackhawk Drive</F><F>408 735
9482</F><F>apetrifaol.com</F><F>1998 Purple Intrigue</F><F>PURPLE</F></R>

<R><F>Ted DiSilvestre</F><F>333 W. San Carlos St.</F><F>408-536-
6508</F><F>tdisilve@adobe.com</F><F>1998 Blue Intrigue</F><F>BLUE</F></R>

<R><F>Dean Griswold</F><F>6947 West Oak Ct.</F><F>916-725-7739</F>
<F>griswold@ix.netcom.com</F><F>1998 Green/gray Intrigue</F>
<F>GREEN/GRAY</F></R>

<R><F>John Doe</F><F>46 Nowhere Street</F><F>654-321-0987</F>
<F>john doe@nowhere.com</F><F>1998 Black Intrigue</F><F>BLACK</F></R>

<R><F>Jenny Jones</F><F>69 Talkshow Road</F><F>543-210-
9876</F><F>jjones@tv.com</F><F>1998 Red Intrigue</F><F>RED</F></R>

</RECORDS>
</INTERNAL7DATA>
</DATA>
</PPMLT>

A.3 The same dataset, if the Reusable Object occurrences
were defined and downloaded earlier

For recurring print projects, a central benefit of PPML is its ability to reference Reusable Object
content that was defined earlier using Global scope. This feature allows transmitting smaller
datasets and eliminates redundant processing of the reusable content.

The following code shows the PPML Templating dataset that produces the same output as above,
presuming that the reusable content was downloaded earlier. The original version was
approximately 18k of XML; this version is 10k.

<?xml version="1.0" encoding="UTF-8"7?>
<PPMLT xmlns="http://www.podi.org/ppmlt/ppmlt001.xsd">
<TEMPLATE Format="application/xslt+xml">
<INTERNAL_ DATA>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:fo="http://www.w3.0rg/1999/XSL/Format" xmlns:svg="svg" version="1.0">
<xsl:output indent="yes"/>
<xsl:strip-space elements="*"/>
<xsl:template match="/">
<!-- Copyright Atlas Software BV -->

The start-of-file information is much shorter.

<PPML>
<DOCUMENT SET Label="Job Number 1">
<IMPOSITION Name="Imporef">
<SIGNATURE Nrows="1" Ncols="1">
<CELL Row="1" Col="1" Face="Up" PageOrder="s"/>
</SIGNATURE>
</IMPOSITION>
<PRINT LAYOUT>
<PAGE_LAYOUT TrimBox="0 0 612 792"/>
<SHEET LAYOUT Hsize="612" Vsize="792">
<IMPOSITION REF Name="Imporef"/>
</SHEET LAYOUT>
</PRINT_ LAYOUT>
<PRIVATE_INFO Creator="Xeikon" Identifier="MasterVDF"/>

www.ppml.org PRELIMINARY and CONFIDENTIAL Copyright © 2002 PODi (www.podi.org) Page 49

PPML Templating Specification Version 1.0 — December 12, 2002

The blue-shaded portion, which defines the PPML Document element that will be output for each
CUSTOMER element, is the same as shown above.

Page 50 Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002 PPML Templating Specification

</DOCUMENT_SET>
</PPML>
</xsl:template>
</xsl:stylesheet>

www.ppml.org PRELIMINARY and CONFIDENTIAL Copyright © 2002 PODi (www.podi.org) Page 51

PPML Templating Specification Version 1.0 — December 12, 2002

</INTERNAL DATA>
</TEMPLATE>

The Data Mapper script (shown here in gray) and the Data element are the same as shown above.

<DATA MAPPER Format="application/xslt+xml">
<INTERNAL DATA>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:fo="http://www.w3.0rg/1999/XSL/Format">
<xsl:output indent="yes"/>
<xsl:template match="R">
<CUSTOMER>
<NAME>
<xsl:value-of select="F[1]"/>
</NAME>
<STREET>
<xsl:value-of select="F[2]"/>
</STREET>
<PHONE>
<xsl:value-of select="F[3]"/>
</PHONE>
<EMAIL>
<xsl:value-of select="F[4]"/>
</EMAIL>
<DESCRIPTION>
<xsl:value-of select="F[5]"/>
</DESCRIPTION>
<IMAGE>
<xsl:value-of select="F[6]"/>
</IMAGE>
</CUSTOMER>
</xsl:template>
<xsl:template match="/">
<CUSTOMERS>
<xsl:apply-templates/>
</CUSTOMERS>
</xsl:template>
</xsl:stylesheet>
</INTERNAL_DATA>
</DATA_MAPPER>
<DATA Format="application/xml">
<INTERNAL DATA>
<RECORDS>
<R><F>Cynthia Proctor</F><F>625 Missouri Street</F><F>510-372-7500</F>
<F>dcgraphicdesigns@hotmail.com</F><F>1998 Purple Intrigue</F>
<F>PURPLE</F></R>
<R><F>Dr. Loose</F><F>Whoville</F><F>123-345-5678</F>
<F>Loose@whoville.com</F><F>1998 Blue Intrigue</F><F>BLUE</F></R>
<R><F>Henry Polard</F><F>33 World Trade Blvd.</F><F>650-855-9367</F>
<F>polard@wenet.net</F><F>1998 Silver Intrigue</F><F>SILVER</F></R>
<R><F>Al Joshua</F><F>4567 My Way</F><F>123-456-789</F>
<F>ajoshua@psmail.com</F><F>1998 Silver Intrigue</F><F>SILVER</F></R>
<R><F>Michelle Walker</F><F>860 36th Ave.</F><F>415/831-1019</F>
<F>shelwalker@aol.com</F><F>1998 Green/gray Intrigue</F>
<F>GREEN/GRAY</F></R>
<R><F>Craig Kohler</F><F>860 36th Ave.</F><F>415/831/1019</F>
<F>craig.kohler@schwab.com</F><F>1998 Black Intrigue</F><F>BLACK</F></R>
<R><F>Ken Griffith</F><F>34286 Quartz St.</F><F>510-796-4975</F>
<F>ken griffith@splashtech.com</F><F>1998 White Intrigue</F>
<F>WHITE</F></R>
<R><F>Harry Raaphorst</F><F>Buys Ballotstraat 17-19</F><F>31-341-426700</F>
<F>harry.raaphorst@atlasssoftware.nl</F><F>1998 Blue
Intrigue</F><F>BLUE</F></R>
<R><F>Michael Barnes</F><F>The Maxwell Company</F><F>415-123-4567</F>
<F>maxwell@edu</F><F>1998 Gold Intrigue</F><F>GOLD</F></R>
<R><F>Gregg Fox</F><F>200 Canal View Blvd. 831</F><F>716-427-4262</F>
<F>gregg fox@mc.xerox.com</F><F>1998 Gold Intrigue</F><F>GOLD</F></R>
<R><F>Paul Lorton, Jr</F><F>1265 Altschul Av.</F><F>650-854-
2406</F><F>lorton@usfca.edu</F><F>1998 Red Intrigue</F><F>RED</F></R>

Page 52 Copyright © 2002 PODi www.podi.org

Version 1.0

— December 12, 2002 PPML Templating Specification

<R><F>Linda Jackson</F><F>405 - 1263 Barclay Street</F><F>604-844-2253</F>
<F>linda jackson@splashtech.com</F><F>1998 Black Intrigue</F> <F>BLACK</F>
</R>

<R><F>Denis Severson</F><F>3400 Hillview Ave.</F><F>650-813-7158</F>
<F>severson@parc.xerox.comn</F><F>1998 Red Intrigue</F><F>RED</F></R>

<R><F>Jindong Chen</F><F>3400 Hillview Ave, PAHV 12</F><F>650-813-7338</F>
<F>jchen@parc.xerox.com</F><F>1998 Gold Intrigue</F><F>GOLD</F></R>

<R><F>Gary Roth</F><F>8758 Wescott Court</F><F>619-484-3226</F>
<F>gary roth@splashtech.com</F><F>1998 Blue Intrigue</F><F>BLUE</F></R>

<R><F>Susan Prischmann</F><F>3930 North Pinegrove, Apt.</F><F>312-849-4361</F>
<F>sprischmann@currentassets.com</F><F>1998 Green/charcoal
Intrigue</F><F>GREENCHARCOAL</F></R>

<R><F>Sue Hoffmann</F><F>2000 Powell Street</F><EF>657-1777</F>
<F>sue_hoffmann@thenet.com</F> <F>1998 Red Intrigue</F><F>RED</F></R>

<R><F>Rick Placak</F><F>130 So. Center</F><F>702-329-
3145</F><F>rplacak@thenet.com</F><F>1998 Red Intrigue</F><F>RED</F></R>

<R><F>Betsy Pryser</F><F>1130 N. Dearborn, #1603</F><F>312-397-
9250</F><F>epryser@ix.netcom.com</F><F>1998 Silver
Intrigue</F><F>SILVER</F></R>

<R><F>Mike Mayo</F><F>124 West Oxmoor</F><F>205-942-
2222</F><F>jmmayo@worldnet.att.net</F><F>1998 Gold
Intrigue</F><F>GOLD</F></R>

<R><F>Armand Petri</F><F>1508 Blackhawk Drive</F><F>408 735
9482</F><F>apetrifaol.com</F><F>1998 Purple Intrigue</F><F>PURPLE</F></R>

<R><F>Ted DiSilvestre</F><F>333 W. San Carlos St.</F><F>408-536-
6508</F><F>tdisilve@adobe.com</F><F>1998 Blue Intrigue</F><F>BLUE</F></R>

<R><F>Dean Griswold</F><F>6947 West Oak Ct.</F><F>916-725-7739</F>
<F>griswold@ix.netcom.com</F><F>1998 Green/gray Intrigue</F>
<F>GREEN/GRAY</F></R>

<R><F>John Doe</F><F>46 Nowhere Street</F><F>654-321-0987</F>
<F>john doe@nowhere.com</F><F>1998 Black Intrigue</F><F>BLACK</F></R>

<R><F>Jenny Jones</F><F>69 Talkshow Road</F><F>543-210-
9876</F><F>jjones@tv.com</F><F>1998 Red Intrigue</F><F>RED</F></R>

</RECORDS>
</INTERNAL DATA>

</DATA>
</PPMLT>

A.4 Leanest form: Template, Reusable Content, and
Data Mapper have all been downloaded in advance

In this version the XML code is reduced to 3.8k — essentially the size of the variable data itself. The

TEMPLATE

and DATA_MAPPER elements each contain an EXTERNAL_DATA reference to a

previously defined file that was downloaded earlier. Similar results could have been achieved using

TEMPLATE_

REF and DATA_MAPPER_REF.

<?xml version="1.0" encoding="UTF-8"7?>
<PPMLT xmlns="http://www.podi.org/ppmlt/ppmlt001.xsd">
<TEMPLATE Format="application/xslt+xml">
<EXTERNAL DATA Src="Project.xsl"/>
</TEMPLATE>
<DATA MAPPER Format="application/xslt+xml">
<EXTERNAL DATA Src="MyMapper.xsl"/>
</DATA7MAPPER>
<DATA Format="application/xml">
<INTERNAL_ DATA>
<RECORDS>

<R><F>Cynthia Proctor</F><F>625 Missouri Street</F><F>510-372-7500</F>
<F>dcgraphicdesigns@hotmail.com</F><F>1998 Purple Intrigue</F>
<F>PURPLE</F></R>

<R><F>Dr. Loose</F><F>Whoville</F><F>123-345-5678</F>
<F>Loose@whoville.com</F><F>1998 Blue Intrigue</F><F>BLUE</F></R>

<R><F>Henry Polard</F><F>33 World Trade Blvd.</F><F>650-855-9367</F>
<F>polard@wenet.net</F><F>1998 Silver Intrigue</F><F>SILVER</F></R>

<R><F>Al Joshua</F><F>4567 My Way</F><F>123-456-789</F>
<F>ajoshua@psmail.com</F><F>1998 Silver Intrigue</F><F>SILVER</F></R>

www.ppml.org

PRELIMINARY and CONFIDENTIAL Copyright © 2002 PODi (www.podi.org) Page 53

PPML Templating Specification Version 1.0 — December 12, 2002

<R><F>Michelle Walker</F><F>860 36th Ave.</F><F>415/831-1019</F>
<F>shelwalker@aol.com</F><F>1998 Green/gray Intrigue</F>
<F>GREEN/GRAY</F></R>

<R><F>Craig Kohler</F><F>860 36th Ave.</F><F>415/831/1019</F>
<F>craig.kohler@schwab.com</F><F>1998 Black Intrigue</F><F>BLACK</F></R>

<R><F>Ken Griffith</F><F>34286 Quartz St.</F><F>510-796-4975</F>
<F>ken griffith@splashtech.com</F><F>1998 White Intrigue</F>
<F>WHITE</F></R>

<R><F>Harry Raaphorst</F><F>Buys Ballotstraat 17-19</F><F>31-341-426700</F>
<F>harry.raaphorst@atlasssoftware.nl</F><F>1998 Blue
Intrigue</F><F>BLUE</F></R>

<R><F>Michael Barnes</F><F>The Maxwell Company</F><F>415-123-4567</F>
<F>maxwell@edu</F><F>1998 Gold Intrigue</F><F>GOLD</F></R>

<R><F>Gregg Fox</F><F>200 Canal View Blvd. 831</F><F>716-427-4262</F>
<F>gregg fox@mc.xerox.com</F><F>1998 Gold Intrigue</F><F>GOLD</F></R>

<R><F>Paul Lorton, Jr</F><F>1265 Altschul Av.</F><F>650-854-
2406</F><F>lorton@usfca.edu</F><F>1998 Red Intrigue</F><F>RED</F></R>

<R><F>Linda Jackson</F><F>405 - 1263 Barclay Street</F><F>604-844-2253</F>
<F>linda jackson@splashtech.com</F><F>1998 Black Intrigue</F> <F>BLACK</F>
</R>

<R><F>Denis Severson</F><F>3400 Hillview Ave.</F><F>650-813-7158</F>
<F>severson@parc.xerox.comn</F><F>1998 Red Intrigue</F><F>RED</F></R>

<R><F>Jindong Chen</F><F>3400 Hillview Ave, PAHV 12</F><F>650-813-7338</F>
<F>jchen@parc.xerox.com</F><F>1998 Gold Intrigue</F><F>GOLD</F></R>

<R><F>Gary Roth</F><F>8758 Wescott Court</F><F>619-484-3226</F>
<F>gary roth@splashtech.com</F><F>1998 Blue Intrigue</F><F>BLUE</F></R>

<R><F>Susan Prischmann</F><F>3930 North Pinegrove, Apt.</F><F>312-849-4361</F>
<F>sprischmann@currentassets.com</F><F>1998 Green/charcoal
Intrigue</F><F>GREENCHARCOAL</F></R>

<R><F>Sue Hoffmann</F><F>2000 Powell Street</F><F>657-1777</F>
<F>sue_hoffmann@thenet.com</F> <F>1998 Red Intrigue</F><F>RED</F></R>

<R><F>Rick Placak</F><F>130 So. Center</F><F>702-329-
3145</F><F>rplacak@thenet.com</F><F>1998 Red Intrigue</F><F>RED</F></R>

<R><F>Betsy Pryser</F><F>1130 N. Dearborn, #1603</F><F>312-397-
9250</F><F>epryser@ix.netcom.com</F><F>1998 Silver
Intrigue</F><F>SILVER</F></R>

<R><F>Mike Mayo</F><F>124 West Oxmoor</F><F>205-942-
2222</F><F>jmmayo@worldnet.att.net</F><F>1998 Gold
Intrigue</F><F>GOLD</F></R>

<R><F>Armand Petri</F><F>1508 Blackhawk Drive</F><F>408 735
9482</F><F>apetrifaol.com</F><F>1998 Purple Intrigue</F><F>PURPLE</F></R>

<R><F>Ted DiSilvestre</F><F>333 W. San Carlos St.</F><F>408-536-
6508</F><F>tdisilve@adobe.com</F><F>1998 Blue Intrigue</F><F>BLUE</F></R>

<R><F>Dean Griswold</F><F>6947 West Oak Ct.</F><F>916-725-7739</F>
<F>griswold@ix.netcom.com</F><F>1998 Green/gray Intrigue</F>
<F>GREEN/GRAY</F></R>

<R><F>John Doe</F><F>46 Nowhere Street</F><F>654-321-0987</F>
<F>john doe@nowhere.com</F><F>1998 Black Intrigue</F><F>BLACK</F></R>

<R><F>Jenny Jones</F><F>69 Talkshow Road</F><F>543-210-
9876</F><F>jjones@tv.com</F><F>1998 Red Intrigue</F><F>RED</F></R>

</RECORDS>
</INTERNAL DATA>

</DATA>
</PPMLT>

Page 54

Copyright © 2002 PODi www.podi.org

Version 1.0 — December 12, 2002

PPML Templating Specification

A.5 Example results

The table below summarizes the effect of the templating application shown in the example above.
In this example, a single PPML Document requires approximately 4.5k bytes of PPML code, and the
Reusable Obiject definitions require approximately 8k bytes. Each record of customer data is about

140 bytes.

A.5.1 PPML without templating

Total data required to produce this many Instance Documents

Method

25 Instance
Documents

1,000 Instance
Documents

10,000 Inst.
Documents

100,000 Inst.
Documents

PPML file size
including Reusable
Obiject definitions
(“ROs”)

RO:s: 8k

PPML excluding
Inst. Docs: 10k

Inst. Docs: 122k
Total: 140k

RO:s: 8k

PPML excluding
Inst. Docs: 10k

Inst. Docs: 4.5MB
Total: 4.52MB

ROs: 8k

PPML excluding
Inst. Docs: 10k

Inst. Docs: 45MB
Total: 45MB

RO:s: 8k

PPML excluding
Inst. Docs: 10k

Inst. Docs: 450MB
Total: 450MB

PPML file size
with ROs
pre-loaded

PPML excluding
Inst. Docs: 10k

Inst. Docs: 122k
Total: 132k

PPML excluding
Inst. Docs: 10k

Inst. Docs: 4.5MB
Total: 4.51MB

PPML excluding
Inst. Docs: 10k

Inst. Docs: 45MB
Total: 45MB

PPML excluding
Inst. Docs: 10k

Inst. Docs: 450MB
Total: 450MB

A.5.2 With templating

Data required to produce this many Instance Documents

Method

25 Instance

1,000 Instance

10,000 Inst.

100,000 Inst.

and mapper
all pre-loaded

Total: 3.8k

Total: 143k

Documents Documents Documents Documents
Data: 3.5k Data: 140k Data: 1.4MB Data: 14MB
PPMLT file size ROs: 8k ROs: 8k ROs: 8k ROs: 8k
Including Reusable
Object definitions Template & Template & Template & Template &
(“ROs”) Mapper: 6.5k Mapper: 6.5k Mapper: 6.5k Mapper: 6.5k
Total: 18k Total: 154k Total: 1.41MB Total: 14MB
Data: 3.5k Data: 140k Data: 1.4MB Data: 14MB
PPMLT file size
with ROs Template & Template & Template & Template &
ore-loaded Mapper: 6.5k Mapper: 6.5k Mapper: 6.5k Mapper: 6.5k
Total: 10k Total: 146k Total: 1.41MB Total: 14MB
PPMLT file size Data: 3.5k Data: 140k Data: 1.4MB Data: 14MB
with ROs, template, Other: 0.3k Other: 0.3k Other: 0.3k Other: 0.3k

Total: 1.4MB

Total: 14MB

www.ppml.org

PRELIMINARY and CONFIDENTIAL Copyright © 2002 PODi (www.podi.org)

Page 55

	Introduction
	Purpose
	Prerequisite reading
	PPML as part of a larger workflow
	Introduction
	The PPML Architecture

	Scope of this specification
	Notation used in this document
	Definitions
	General PPML-related terms
	Terms related to Templating

	Requirements
	Must not interfere with existing PPML Consumers in non-template applications
	Support multiple formats for the data list
	Compatible with PPML Requirements
	Flexible workflow: Allow template and data to be transmitted in a single package or separately, which enables reusability of the data and the template

	Applications of PPML Templating
	Introduction
	Benefits of templating
	How templating differs from conventional workflows
	Anatomy of a variable print project
	Conventional Variable Data workflow
	PPML Template workflow

	Examples
	Basic applications
	Advanced Applications
	Considerations in the design of templating workflows

	XML, Scripting, and XSLT
	Introduction
	Scripting technologies for PPML Templates
	XML
	XSLT
	Overview of what XSLT does
	High-level description

	Format of an XSL template file
	Literal Result Element as Stylesheet
	General sequence of events in XSL

	Structure of a PPML€Templating Project
	Overview
	Element content: Internal vs. External Data
	External Data example (reference to an external file)
	Internal Data example
	Example of referencing content downloaded earlier

	The <PPMLT> Element
	Description
	Model
	Attributes
	Result of processing a PPMLT element
	Template only
	Data only
	Both template and data are identified

	The <TEMPLATE> Element
	Description
	Model
	Attributes

	The <TEMPLATE_REF> Element
	The <DATA> Element
	Model
	Attributes

	The <DATA_REF> Element
	The <EXTERNAL_DATA> Element
	Context
	Application note regarding URI

	The <INTERNAL_DATA> Element
	Description
	Model
	Attributes

	The <DATA_STRUCTURE> Element
	The <DATA_MAPPER> element
	The <DATA_MAPPER_REF> Element
	The <INPUT_DATA_STRUCTURE> Element
	The <OUTPUT_DATA_STRUCTURE> Element

	Data
	Introduction
	The <RECORDS> element
	Description
	Model
	Attributes
	Context

	The <R> element
	Description
	Model
	Attributes
	Context

	The <F> element
	Description
	Models
	Attributes
	Context

	Very long data streams

	Sample Application
	A.1	Introduction
	A.2	Example 1: PPML Templating code, including Reusable Object definitions, complete PPML Template and Data Mapper, and data records
	A.3	The same dataset, if the Reusable Object occurrences were defined and downloaded earlier
	A.4	Leanest form: Template, Reusable Content, and Data€Mapper have all been downloaded in advance
	A.5	Example results
	A.5.1 PPML without templating
	A.5.2 With templating

